
Learning Stochastic Inverses for
Adaptive Inference in Probabilistic Programs

Andreas Stuhlmüller
Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology

Noah D. Goodman
Department of Psychology

Stanford University

Abstract

We describe an algorithm for adaptive inference in probabilistic programs. Dur-
ing sampling, the algorithm accumulates information about the local probability
distributions that compose the program’s overall distribution. We use this informa-
tion to construct targeted samples: given a value for an intermediate expression,
we stochastically invert each of the steps giving rise to this value, sampling back-
wards in order to assign values to random choices such that we get a likely parse
of the intermediate value. We propose this algorithm for importance sampling and
as a means of constructing blocked proposals for a Metropolis-Hastings sampler.

1 Introduction

Probabilistic programming is a recent merger between programming languages and Bayesian statis-
tics that enables rapid development of complexly structured probabilistic models. Given a prob-
abilistic program, the problem of inference is typically formulated in terms of conditioning: the
program samples from a joint distribution p(x, y), and our goal is to sample from a conditional
distribution p(x|y). Implementations of probabilistic programming languages provide generic algo-
rithms that attempt to solve this problem.

Two considerations guide us in the design of new inference algorithms: first, we aim to provide
algorithms that efficiently solve common inference problems, and, second, we aim to model human
reasoning. Taken together, these goals suggest two desiderata for algorithms: We want inference to
be adaptive in the sense that our algorithms should improve at solving a given inference problem
over time, inspired by the way people learn to reason about a problem type. We further want infer-
ence to be compositional in the sense that the algorithms decompose a big, challenging query into
smaller queries that are easier to solve.

In the following, we describe how to extend existing importance sampling and MCMC algorithms
such that they more strongly exhibit these properties. We outline the dimensions along which adap-
tive inference algorithms vary and explain where our proposed algorithm is located in this space. In
our analysis, we focus on functional probabilistic languages, using Church (Goodman et al., 2008)
and its foundation, the stochastic lambda calculus, as representatives for this class.

2 Learning stochastic inverses

The goal of adaptive inference is to improve the quality and/or efficiency of sampling over time,
ideally converging to an efficient source of exact samples from the posterior distribution. Adaptive
algorithms vary along a number of dimensions:

What are the units we learn? There are many choices, including parameters that depend on what
underlying inference algorithm we use, e.g., the step size and number of leapfrog steps for Hamilto-
nian Monte Carlo. We will focus on learning about the distribution of the model.

1

(define (noisify value)
(gaussian value 2))

(define reflectance
(gaussian 1 1))

(define illumination
(+ (gamma 9 .5)

(gaussian 1 .5)))
(define luminance
(* reflectance

illumination))

(noisify luminance)

(noisify luminance)

(* reflectance illumination)noisify(gaussian value 2)

* (gaussian 1 1) (+ (gamma 0 .5) (gaussian 1 .5))

+ (gamma 0 .5) (gaussian 1 .5)

apply

apply

Figure 1: Left: A probabilistic program modeling brightness constancy in visual perception. Right:
an execution trace corresponding to the program’s evaluation.

In functional probabilistic programs, this distribution exhibits a clear independence structure. The
evaluation of a functional program induces a tree of nested function applications—an execution
trace. Figure 1 shows an example. For any application (A1 A2 . . . An), the probability of returning
a value v is

p(v) =
∫
· · ·

∫
p(a1)p(a2) . . . p(an)p(a1(a2, . . . , an) = v) da1 . . . dan.

This suggests that candidates for learning include priors p(a1), p(a2), . . . , p(an), conditional dis-
tributions p(a1, a2, . . . , an|v), and joint distributions p(a1, a2, . . . , an, v). The dynamic program-
ming algorithm presented in Stuhlmüller and Goodman (2012) can be viewed as an approach to
learning about priors. Adaptive importance sampling algorithms such as AIS-BN learn about con-
ditional distributions p(r|c) where r is a primitive random choice and c the global query condition
(Cheng and Druzdzel, 2000). We are interested in learning about local conditional distributions
p(a1, a2, . . . , an|v), which we call stochastic inverses. Taken together, these inverses provide an
alternative factorization of the program’s joint distribution. For example, for the single applica-
tion shown above, p(a1)p(a2) · · · p(an)p(v|a1, . . . , an) is replaced with the inverse factorization
p(v)p(a1, a2, . . . , an|v).

How do we learn the units given program executions? In other words, how do we turn the
information we gather during program evaluation into estimates for the units of interest? In general,
many machine learning methods are of potential relevance, including discriminative methods.

We take a local density approximation approach.1 Whenever we encounter an application
(A1 A2 . . . An) during evaluation, we store the values ~a := a1, a2, . . . , an together with appli-
cation return value v. Figure 2 shows the local joint distributions for the program in Figure 1. We
can view these joint distribution samples as an implicit representation of the approximate condi-
tional distribution: In order to sample from the conditional distribution p(~a|v) given a new value v∗,
we find the subset of points {(~a(i), v(i)), . . . , (~a(j), v(j))} containing nearest neighbors to v∗. We
construct a kernel density estimate of the preimage distribution from these neighbors, and sample a
preimage ~a∗ from this density (Algorithm 1).

For these estimates to be accurate, our sampled program executions need to provide unbiased esti-
mates of the distributions of interest. This can be achieved by computing the estimates using samples
from the unconditioned program. In the discussion, we consider the case where the program execu-
tions are generated in the process of approximate inference.

How do we use the units to change the inference process? This depends on the underlying
inference algorithm. We consider two cases, importance sampling and MCMC.

In order to use stochastic inverses for importance sampling, we simply sample according to the
alternative factorization described above. Unconditioned, this process starts by sampling from the

1Density estimation techniques such as Gaussian Processes and infinite Gaussian mixtures are alternatives.
However, quality of estimation needs to be balanced against computational cost. It is also unclear whether the
priors expressed by such nonparametric techniques mesh with the distributions we actually encounter.

2

−10 0 10 20 30

−
10

0
10

20
30

luminance

(n
oi

si
fy

 lu
m

in
an

ce
)

−4 −2 0 2 4 6−
20

−
10

 0
 1

0
 2

0
 3

0

 0
 2

 4
 6

 8
10

reflectance

ill
um

in
at

io
n

lu
m

in
an

ce

 0 2 4 6 8 10 12 0
 2

 4
 6

 8
10

12

 0
 2

 4
 6

 8
10

(gamma 9 .5)

(g
au

ss
ia

n
1

0.
5)

ill
um

in
at

io
n

Figure 2: Local joint distributions for the brightness constancy program shown in Figure 1.

Algorithm 1: Given value v for expression e, sample immediate subexpressions.
function STOCHASTICINVERT(e, v∗)

find nearest neighbors for value v∗ in expression data {(~a(1), v(1)), (~a(2), v(2)), . . . , (~a(m), v(m))}
construct density estimate pK on nearest-neighbor subexpression values {~a(i), . . . ,~a(j)}
draw ~a∗ from density estimate
return ~a∗, pK(~a∗)

marginal distribution on the return value of the program. Without loss of generality, we assume that
this value represents the Boolean value of the conditioning expression. We set this value to true
and sample backwards using our inverses. This process bottoms out at elementary random choices,
which allows us to read off the prior probability p of the sampled execution trace and to compute
the importance weight p/q of our sample (Algorithm 2).

For Metropolis-Hastings, we build on the Church MCMC algorithm that executes a random walk
on program execution traces (Goodman et al., 2008). To make proposals, this algorithm selects a
random choice, proposes a new value, and propagates the changes through the execution trace. We
augment this algorithm by introducing a new type of proposal: select a random application node in
the execution trace, then regenerate the subtree below this node using stochastic inverses. This sets
all random choices in this tree, creating a blocked proposal. Once the random choices are set, we
propagate the changes analogous to the original Church MCMC algorithm.

3 Examples: XOR, brightness constancy

Consider the program (xor (flip)(flip)) conditioned to return true. Single-site MCMC can-
not switch between the two valid assignments [1 0] and [0 1]. In contrast, our algorithm can construct
blocked proposals that swap both assignments simultaneously: given knowledge of the joint distri-
bution, our algorithm will resample the arguments to xor in a way that leaves the condition satisfied.
This could be extremely useful if the xor expression occurred within a larger program.

As a second example, consider the brightness constancy program shown in Figure 1. Figure 2 shows
the corresponding local joint distributions. To sample from the program under the condition that we
noisily observed a luminance of 3, we proceed as follows (left to right in the Figure): conditioned on
(noisify luminance) being 3, we sample a luminance l. Next, conditioned on luminance l, we
sample a reflectance r and illumination i. Finally, conditioned on illuminance i, we sample values
for the gamma and Gaussian random primitives. Figure 3 shows that the empirical variance of the
importance weights for a sampler that follows this procedure goes to 0 as we refine the inverses
using forward samples (percentiles computed across 50 runs). If the stochastic inverses are exact,
this produces a posterior sample in a way that satisfies the goals we set in the introduction: we have
decomposed the overall problem into smaller problems of sampling from local conditional distribu-
tions (stochastic inverses), and adaptive learning of these inverses gradually improves inference.

3

Algorithm 2: Recursively importance-sample
expression e conditioned on return value v.

procedure INVERSEIMPORTANCE(e, v)
~a, q0← STOCHASTICINVERT(e, v)
for i = 1 to |e| do

if ei is a primitive random choice then
store value ~ai for choice ei

pi, qi ← pei(~ai), 1
else

pi, qi ← INVERSEIMPORTANCE(ei, ai)
return p1 · · · pn, q0q1 · · · qn

500 1000 1500 2000 2500 3000

0.
1

1.
0

10
.0

10
00

.0

Number of samples

V
ar

ia
nc

e
of

 w
ei

gh
ts

median
75th
90th

Figure 3: On the right: Results for adaptive importance sampling applied to the program in Figure
1. As the number of samples used to estimate stochastic inverses increases, the empirical variance
of the importance weights approaches 0 (implying convergence to a perfect posterior sampler).

4 Related work and discussion

There exists prior work on both adaptive importance sampling and adaptive MCMC. A number of
adaptive importance sampling algorithms have been proposed for Bayesian networks, e.g., Shachter
and Peot (1989), Cheng and Druzdzel (2000), and Ortiz and Kaelbling (2000). These techniques
typically learn importance distributions with the same independence structure as the prior, which
in general excludes exact representation of the posterior. Similarly, adaptive MCMC techniques
such as those presented in Roberts and Rosenthal (2009) and Haario et al. (2006) are used to tune
parameters of the MCMC algorithms, but do not allow arbitrarily close adaptation to the posterior,
whereas our method is designed to allow such close approximation. Future work will be required to
evaluate whether our methods for importance sampling and MCMC provide better results in practice
than these other approaches.

A key question for our method is whether we can use samples that are produced from a distribution
that is not the prior and still guarantee eventual convergence of the estimated inverse distributions.
Samples generated from the prior may be sparse in regions that have high probability under the
posterior, resulting in slow convergence of our stochastic inverses for the problem of interest. We can
encourage higher coverage by temporarily increasing the entropy of our random variables, or target
the region of interest by using the samples generated during MCMC, however these alternatives both
result in biased inverses. When can we correct for this bias, or rely on bias washing out over time?

Acknowledgments

We thank Thomas Icard, Jacob Steinhardt and Lewis Fishgold for useful discussions, and ONR grant
N00014-09-0124 for funding.

References
J. Cheng and M. Druzdzel. AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in

large bayesian networks. Journal of Artificial Intelligence Research, 2000.
N. D. Goodman, V. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum. Church: a language for

generative models. Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence, pages 220–
229, 2008.

H. Haario, M. Laine, A. Mira, and E. Saksman. DRAM: efficient adaptive MCMC. Statistics and Computing,
16(4):339–354, 2006.

L. E. Ortiz and L. P. Kaelbling. Adaptive importance sampling for estimation in structured domains. In Proc. of
the 16th Ann. Conf. on Uncertainty in A.I. (UAI-00), pages 446–454. Morgan Kaufmann Publishers, 2000.

G. Roberts and J. Rosenthal. Examples of adaptive MCMC. Journal of Computational and Graphical Statistics,
18(2):349–367, 2009.

R. D. Shachter and M. A. Peot. Simulation approaches to general probabilistic inference on belief networks. In
Proc. of the 5th Ann. Conf. on Uncertainty in A.I. (UAI-89), pages 311–318, New York, NY, 1989. Elsevier
Science.

A. Stuhlmüller and N. D. Goodman. A dynamic programming algorithm for inference in recursive probabilistic
programs. Second Statistical Relational AI workshop at UAI 2012 (StaRAI-12), 2012.

4

