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Abstract

We describe a general method of transforming
arbitrary programming languages into proba-
bilistic programming languages with straight-
forward MCMC inference engines. Random
choices in the program are “named” with in-
formation about their position in an execution
trace; these names are used in conjunction with
a database holding values of random variables
to implement MCMC inference in the space of
execution traces. We encode naming informa-
tion using lightweight source-to-source com-
pilers. Our method enables us to reuse existing
infrastructure (compilers, profilers, etc.) with
minimal additional code, implying fast models
with low development overhead. We illustrate
the technique on two languages, one functional
and one imperative: Bher, a compiled version
of the Church language which eliminates in-
terpretive overhead of the original MIT-Church
implementation, and Stochastic Matlab, a new
open-source language.

1 INTRODUCTION

Probabilistic programming languages simplify the devel-
opment of probabilistic models by allowing program-
mers to specify a stochastic process using syntax that
resembles modern programming languages. These lan-
guages allow programmers to freely mix deterministic
and stochastic elements, resulting in tremendous mod-
eling flexibility. The resulting programs define prior dis-
tributions: running the (unconditional) program for-
ward many times results in a distribution over execu-
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tion traces, with each trace generating a sample of data
from the prior. The goal of inference in such programs
is to reason about the posterior distribution over execu-
tion traces conditioned on a particular program output.
Examples include BLOG [7], PRISM [15], Bayesian Logic
Programs [5] Stochastic Logic Programs [9], Markov Logic
[14], Independent Choice Logic [12], IBAL [11], Proba-
bilistic Scheme [13],Λ◦ [10], and HANSEI [6].

We present a general technique for turning any program-
ming language into a probabilistic programming lan-
guage with an accompanying universal Markov chain
Monte Carlo inference engine. Our method allows the
full use of all language constructs permitted by the orig-
inal (non-probabilistic) language by leveraging native
compilers (or interpreters). The key technical idea is to
give each random choice of a fixed program a unique
“name” that depends on its position in a given execution
trace. We then convert stochastic functions into deter-
ministic ones which use these names to look up their re-
turn values in a database that stores the values of all ran-
dom choices. By controlling the values in this database,
execution traces of the program can be controlled, which
allows us to construct the key operations needed for the
Metropolis-Hastings algorithm.

Different techniques for naming random choices result
in different MCMC dynamics. Our central contribution
is to name random choices based on their structural po-
sition in the execution trace, which allows fine-grained
sharing of random choice values between subsequent
MCMC states. We describe how naming information can
be provided by a side computation that is constructed by
a source-to-source transformation at compile time: the
original probabilistic program can be augmented with
naming information to create a new program that makes
the names available. The resulting new program can be
executed at full speed, with only minimal overhead to
track names and control the database, and no changes to
the compiler or interpreter for the underlying language.

We illustrate our technique on two languages, one func-
tional and one imperative. The first is named “Bher,”
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and is a compiler for the Church probabilistic program-
ming language [4]. The current MIT-Church implemen-
tation uses a custom interpreter to reason about the dis-
tribution of execution traces, but since our method does
not incur interpretive overhead, the resulting programs
can run orders of magnitude faster. We also illustrate
the technique on an imperative language by creating
Stochastic Matlab, an entirely new language.

2 OVERVIEW OF THE METHOD

We begin by outlining our setup. We define an uncondi-
tioned probabilistic program to be a parameterless func-
tion f with an arbitrary mix of stochastic and determin-
istic elements (hereafter, we will use the term function
and program interchangeably). The function f may be
written in any language, but our running example will be
Matlab. We allow the function to be arbitrarily complex
inside, using any additional functions, recursion, lan-
guage constructs or external libraries it wishes. The only
constraint is that the function must be self-contained,
with no external side-effects which would impact the ex-
ecution of the function from one run to another.

The stochastic elements of f must come from a set of
known, fixed elementary random primitives, or ERPs.
Complex distributions are constructed compositionally,
using ERPs as building blocks. In Matlab, ERPs may be
functions such as rand (sample uniformly from [0,1]) or
randn (sample from a standard normal). Higher-order
random primitives, such as nonparametric distributions,
may also be defined, but must be fixed ahead of time.
Formally, let T be the set of ERP types. We assume that
each type t ∈ T is a parametric family of distributions
pt (x|θt ), where θt are the parameters of the distribution.

As f is executed, it encounters a series of ERPs. Algo-
rithm 1 shows an example of a simple f written in Matlab.
Here, there are three syntactic ERPs: rand, randn, and
gammarnd. During execution, depending on the return
value of each call to rand, different paths will be taken
through the program, and different ERPs will be encoun-
tered. We call this path an execution trace. A total of 2000
random choices will be made when executing this f .

Let fk|x1,···,xk−1
be the k’th ERP encountered while execut-

ing f , and let xk be the value it returns. Note that the
parameters passed to the k’th ERP may change depend-
ing on previous xk ’s (indeed, its type may also change, as
well as the total number of ERPs). We denote by x all of
the random choices which are made by f , meaning that f
defines the probability distribution p(x). In our example,
x ∈ R2000. The probability of x is therefore the product of
the probability of all of the ERP choices made:

p(x) =
K∏

k=1
ptk (xk |θtk , x1, · · · , xk−1)

Algorithm 1 A simple Stochastic Matlab program repre-
senting a Gaussian-Gamma mixture model.

1: for i=1:1000
2: if ( rand > 0.5 )
3: X(i) = randn;
4: else
5: X(i) = gammarnd;
6: end;
7: end;

again noting explicitly that types and parameters may de-
pend arbitrarily on previous random choices. To simplify
notation, we will omit the conditioning on the values of
previous ERPs, but again wish to emphasize that these
dependencies are critical and cannot be ignored. By fk , it
should therefore be understood that we mean fk|x1,···,xk−1

,
and by ptk (xk |θtk ) we mean ptk (xk |θtk , x1, · · · , xk−1).

Generative functions as described above are, of course,
easy to write. A much harder problem, and our goal in
this paper, is to reason about the posterior conditional
distribution p(x\c |xc ), where we define xc to be a sub-
set of random choices which we condition on and x\c

to be the remaining random choices. For example, we
may condition our example program on the values of
the X(i)’s, and reason about the sequence of rand’s most
likely to generate the X(i)’s. Rejection sampling is one
possible inference method: we may run f forward until
xc is generated, somehow recording x\c . Of course, such
an approach is intractable for all but the simplest models.

We propose a different approach, based on the follow-
ing intuition. Consider repeatedly running an uncondi-
tioned f . Every time an fk is encountered, the program
samples an xk and continues execution. Importantly, if
two runs of f sample exactly the same values, their traces
will be the same. This suggests the following procedure
for controlling the execution of f :

1. Give each fk in every possible execution trace a
“name.” This name does not have to be unique, and
can depend on previous xk ’s or other information
about program state.

2. Rewrite the source code of f to generate f ′, replac-
ing random functions fk with deterministic func-
tions f ′

k . When encountered in the execution trace,
these functions f ′

k deterministically use their name
to look up a current value xk in a database and re-
turn it (and if no value exists, they sample xk ∼
ptk (�|θtk )., store it in the database, and then return
it). Behind the scenes, these functions also accumu-
late the likelihood of each random choice.

Thus, the execution trace of f ′ can be controlled by ma-
nipulating the values in the database. This makes MCMC
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Algorithm 2 An MCMC trace sampler.

1: Initialize: [ D, l l , , ] = trace_update( ; )
2: Repeat forever:
3: Select a random fk via its name n
4: Look up its current value (t , x, l ,θdb) =D(n).
5: Propose a new value x ′ ∼Kt (�|x,θdb)
6: Compute F = logKt (x ′|x,θdb)
7: Compute R = logKt (x|x ′,θdb)
8: Compute l ′ = log pt (x ′|θdb)
9: Let D′ =D

10: Set D′(n) = (t , x ′, l ′,θdb)
11: [ D′, l l ′, l l fresh, l l stale ] = trace_update( D′ )
12: α= l l ′− l l +R −F + log |D|− log |D′|+ l l stale− l l fresh

13: if ( log(rand) <α )
14: // accept
15: D=D′
16: l l = l l ′
17: else
18: // reject; discard D′

inference possible by enabling proposals, scoring, and
the ability to accept or reject proposals. We make a
proposal to an execution trace by picking an xk in the
database, modifying it according to a proposal distribu-
tion, and then re-executing f ′ and computing the likeli-
hood of the new trace. As f ′ is executed, some random
choices may be reused, new randomness may be trig-
gered (which is sampled from the prior), and randomness
that was previously used may no longer be needed. In our
example, we can make a proposal to, say, the 500th rand.
This will change the execution trace, switching between
the Gaussian branch and the gamma branch.

We now address the details. Section 2.1 discusses the
overall MCMC algorithm, Section 2.2 discusses how ran-
dom variables are named, and Section 2.3 discusses con-
ditional inference.

2.1 MCMC IN TRACE SPACE

We now describe our MCMC algorithm. Here, we assume
that some naming scheme has been defined, and that a
mechanism for computing those names has been imple-
mented; we will discuss how to do this in the next section.

Let a database D be defined as a mapping N→ T × X ×
L×θ, where N is the name of a random choice, T is its
ERP type, X is its value, θ are ERP parameters, and L is
this random value’s likelihood. We allow missing entries.

We can control the execution of f ′ by controlling the val-
ues in D. When f ′ encounters an f ′

k , it computes its
name n ∈ N, its parameters θc (where ‘c’ is a mnemonic
for “current”), and its current type tc ∈ T . It then looks
up (t , x, l ,θdb) = D(n). If a value is found and the types

Algorithm 3 Function trace_update( D )

1: Initialize l l , l l fresh, and l l stale to 0
2: Execute f :
3: For all random choices k:
4: Run computation until choice k,

determining n, tc ,θc for k.
5: Look up (t , x, l ,θdb) =D(n)
6: if a value is found in the database and t = tc

7: if parameters match (ie, θc == θdb)
8: l l = l l + l
9: else

10: // rescore ERP with new parameters
11: Compute l = log ptc (x|θc )
12: Store D(n) = (tc , x, l ,θc )
13: l l = l l + l
14: else
15: // sample new randomness
16: Sample x ∼ pt (.|θc )
17: Compute l = log pt (x|θc )
18: Store D(n) = (tc , x, l ,θc )
19: l l = l l + l
20: l l fresh = l l fresh + l
21: Set return value of fk to x
22: For all random choices k inD:
23: if k has not been active in this update:
24: Look up (t , x, l ,θdb) =D(k)
25: l l stale = l l stale + log pt (x|θdb)
26: Remove k from D

27: return [ D, l l , l l fresh, l l stale ]

match, we set the return value of fk to be x. Other-
wise, the value is sampled from the appropriate ERP x ∼
ptc (�|θc ), its likelihood is computed, and the correspond-
ing entry in the database is updated. We accumulate the
log-probability of new randomness, l l fresh, and the log-
probability of randomness that is no longer used, l l stale.
This is formalized in the trace_update procedure, de-
fined in Algorithm 3.

We use trace_update to define our overall MCMC al-
gorithm, shown in Algorithm 2. Given a current trace x
and score p(x), we proceed by reconsidering one random
choice xk . We equip each ERP type with a proposal kernel
Kt (x ′|x,θ), which we use to generate proposals to xk . Af-
ter a proposal, we call trace_update to generate a new
trace x ′, and compute its likelihood p(x ′) and the prob-
abilities of new and stale randomness, pfresh and pstale.
This gives us an overall score, which is used as an MH ac-
cept ratio

α= min

{
1,

p(x ′)Kt (x|x ′,θ) |D|pstale

p(x)Kt (x ′|x,θ) |D′|pfresh

}
There are a few subtleties to the implementation. Even
if an x for an f ′

k is found in D, we must compare the pa-
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Algorithm 4 An illustration how the number and type of
random choices can change.

1: m = poissrnd();
2: for i=1:m
3: X(i) = gammarnd();
4: end;
5: for i=m+1:2*m
6: X(i) = randn;
7: end;

rameters θc and θdb to make sure they are equal; if they
are not, we may still be able to re-use x, but must re-
score it under the new parameters θc . We also remove un-
used (“stale”) random choices from the database to en-
sure that subsequent new randomness is sampled from
the prior, and allows us to avoid reversible jump correc-
tions. Finally, note that many of the probabilities in α

cancel when proposals are made from the local prior.

2.2 NAMING RANDOM VARIABLES

What properties do we desire in a naming scheme? We
build around a simple idea: when we propose a new x ′

k
and update the trace, we wish to reuse as many xk ’s as
possible. This will give us a new execution trace “close” to
the original, which is important to ensure a high accep-
tance rate in our MCMC sampler (recall that if an f ′

k can-
not reuse a value from D, one is sampled from the prior,
which is unlikely to be good).

How might different naming schemes affect reuse of ran-
domness? Algorithm 4 shows a simple program f which
we will use to illustrate different approaches. As f exe-
cutes, it first encounters a Poisson, and then a sequence
of gamma and Gaussian variables. One might be tempted
to name random variables sequentially, according to the
order in which they are encountered during execution—
that is, use k itself as the name. Figure 1 (top) illustrates
why this is a bad idea. Two traces are shown schemat-
ically, illustrating the f ′

k ’s encountered. Suppose that in
trace #1, the value of m is 3. A proposal is made, changing
m to 2, yielding trace #2. If variables are named sequen-
tially, then x1 and x2 can be reused without problem, but
when f ′

3 looks itself up in D, it discovers that its type has
changed, and must sample x3 from the prior. The rest of
the sequence is now “misaligned,” and must probably be
discarded. More sophisticated versions of this problem
complicate this naming scheme to the point of unworka-
bility, especially with complex models.

What is an alternative? Examining Alg. 4, we see that
would like to name variables according to the way they
are used at a more semantic level. For example, we might
want to name a variable “the third gamma variable in the
loop on lines 2-4.”

1-1 3-1 3-2 6-1 6-2

Trace 1

Trace 2

poisson gamma gaussian

1-1 3-1 3-2 3-3 6-1 6-2 6-3

1 2 3 4 5 6 7

1 2 3 4 5

Trace 1

Trace 2N
a
iv

e
n
a
m

in
g

S
tr

u
ct

u
ra

l
n
a
m

in
g

(m=3)

(m=2)

(m=3)

(m=2)

Figure 1: An illustration of two naming schemes. Vari-
ables are boxes with names inside. Top: the problem
with naive variable naming. Notice the type mismatch
at time 4 as well as the general sequence misalignment.
Bottom: structural naming yields the desired behavior,
reusing the maximum number of random choices.

Our key technical contribution formalizes this intuition.
We name random choices according to their structural
position in the execution trace, which we define in a way
roughly analogous to a stack address: a variable’s name
is defined as list of the functions, their line numbers, and
their loop indices that precede it in the call stack. Thus, in
Alg. 4, variables are named “1” (the initial Poisson), “3-1,”,
“3-2,” ... (the gamma variables sampled on line 3), and
“6-1,”, “6-2,” ... (the Gaussian variables sampled on line
6). Figure 1(bottom) illustrates this on Alg. 4: we see that
the maximum number of random variables are reused.

We now discuss naming schemes for imperative and
functional languages.

Imperative. For an imperative language, such as
Matlab, we define the structural position with an ab-
stract stack trace that is augmented with a combina-
tion of function identifiers, line numbers, and loop it-
eration numbers. The formal specification is inductive,
as shown in Figure 2. In an interpreted imperative lan-
guage, such as Python, Matlab or Ruby, this naming infor-
mation could potentially be acquired via dynamic stack
examination, assuming suitable libraries exist. Alterna-
tively, this information can be provided by augmenting
the source code for f , as we shortly discuss.

Functional. For a functional language, such as Lisp, we
do not need to worry about loops or line numbers: every-
thing is a function, so we may define the structural po-
sition with a stack trace that is augmented with function
identifiers. The specification is shown in Figure 3.

There is no guarantee that this naming scheme is optimal
in any sense, but it does capture our desiderata, is simple
and fast, and incurs minimal overhead.
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A top �E� = ((lambda (addr) A�E�) (́top))
A�(lambda (I n

i=1) Ebod y)� = (lambda (addr . I n
i=1) A�Ebod y �)

A�(mem E)� = ((lambda (maddr f) (lambda (addr . args) (apply f (cons args maddr) args))) addr A�E�)
A�(begin E n

i=1)� = (begin A�Ei �n
i=1)

A�(letrec ((Ii Ei )
n
i=1) Ebod y)� = (letrec ((Ii A�Ei �)n

i=1) A�Ebod y �)
A�(if Et Ec Ea)� = (if A�Et � A�Ec � A�Ea�)
A�(define I E)� = (define I A�E�)
A�(quote E)� = (quote E)
A�(Eop E n

i=1)� = (A�Eop � (cons Ś addr) A�Ei �n
i=1) with S being a globally unique symbol.

A�E� = E , otherwise.

Figure 3: The naming specification for Bher is given by a syntactic transform A top .

• Begin executing f with empty function, line, and loop
stacks.

• When entering a new function,

◦ push a unique function id on the function stack.
◦ push a 0 on the line stack.

• When moving to a new line, increment the last value
on the line stack.

• When starting a loop, push a 0 on the loop stack.

• When iterating through a loop, increment the last
value on the loop stack.

• When exiting a loop, pop the loop stack.

• When exiting a function, pop the function stack and
the line stack.

Figure 2: The imperative naming specification. The
name of an fk is the state of the three stacks when fk is
encountered.

2.3 CONDITIONAL INFERENCE

In principle, a program can be conditioned on any ex-
pression that evaluates to a Boolean value, not just on a
fixed value assignment for a subset of the random vari-
ables of the program. The meaning of such a conditioned
program is defined by rejection sampling: Sample an ex-
ecution trace from the unconditioned program. If the
value of the conditioning expression is true, return this
trace. Otherwise, retry.

In practice, a MCMC implementation that allows gen-
eral conditions requires that for any valid condition,
we can find an initial assignment of random variables
to values that satisfies this condition. If conditioning
is not restricted to random variables (Stochastic Mat-
lab), then this is a search problem that needs to be
solved. Possible approaches include constraint propaga-
tion (MIT-Church), annealing (Bher), and rejection sam-
pling (Bher). We leave the analysis of this problem to fu-
ture research.

L�(lambda (I n
i=1) Ebod y)� = (lambda (I n

i=1) L�Ebod y �)
L�(letrec ((Ii Ei )

n
i=1) E)� = (letrec ((Ii D�Ei �)n

i=1) L�E�)
L�(begin E n

i=1)� = (begin (force L�Ei �)n−1
i=1 L�En�)

L�(mem E)� = (mem L�E�)
L�(quote E)� = (quote E)
L�(if Et Ec Ea)� = (if (force L�Et �) D�Ec � D�Ea�)
L�(Eop E n

i=1)� = ((force L�Eop �) D�Ei �n
i=1)

L�E� = E , otherwise.
D�(lambda I E)� = L�(lambda I E)�
D�(mem (lambda I E))� = L�(mem (lambda I E))�
D�E� = (list d́elayed (mem (lambda () L�E�))), otherwise.

(define (force address val)
(if (and (pair? val) (eq? (car val) ’delayed))

(force address ((cadr val) address)))
val)

Figure 4: Laziness transform L and definition of the func-
tion force referenced in the transform.

3 IMPLEMENTATION AND EXPERIMENTS

We now present two implementations of our technique.
Bher is a compiled implementation of Church, and
Stochastic Matlab is a new, open-source language. Both
illustrate the virtues of our approach: small code bases,
high speed, and language flexibility.

3.1 EXAMPLE: BHER

Bher is an implementation of the Church probabilistic
programming language that compiles Church code to na-
tive Scheme code. Like MIT-Church, the original im-
plementation of the Church language, Bher is written in
R6RS Scheme. However, MIT-Church is an interpreter—
not based on the lightweight implementation principle—
and thus provides a useful point of comparison.

In the following, we first discuss the addressing trans-
form that names random choices in Bher, then compare
performance between Bher and MIT-Church on Hidden
Markov Models and Latent Dirichlet Allocation.
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Algorithm 5 A Church program that samples from a geo-
metric distribution.

(begin
(define geometric

(lambda (p)
(if (flip p)

1
(+ 1 (geometric p)))))

(geometric .7))

3.1.1 Syntactic Transformations

The syntactic transform that provides addresses is shown
in Figure 3. The address that is built at runtime consists
of a list of symbols. The transform is designed to change
the program code such that a new symbol is added to the
front of this list whenever the stack is extended.

The transform has two central parts: First, change each
function definition such that the function takes another
argument, the address. Second, change each function
application such that (1) the current address is extended
with a symbol that uniquely identifies this (syntactic) ap-
plication within the program and (2) pass on this modi-
fied address as an argument when the function is applied.

On the top level of the program, the address variable
addr is initialized to (́top). Except for memoization
(mem) and quote, all remaining syntax cases are handled
by applying the addressing transform to all proper subex-
pressions. Primitive functions like + and cons need to
be redefined to take (and ignore) the address argument,
e.g. to (lambda (addr . args) (apply prim args)).
In Bher, all globally free variables are treated as primitives
and redefined in this way.

In deterministic programs, memoization is an optimiza-
tion technique that does not affect semantics: When a
memoized function returns, it stores the return value for
its current set of arguments in a cache. When the func-
tion is called a second time with the same arguments, the
value is not computed again, but instead the value found
in the cache is returned.

In stochastic programs, we can distinguish mem as a se-
mantic construct from mem as an optimization technique
[4]. The distribution defined by (eq? (flip) (flip))
is very different from the distribution defined by
(let ([mf (mem flip)]) (eq? (mf) (mf))). The for-
mer is true with probability .5, false with probability .5;
the latter is true with probability 1.

When addresses are available, semantic memoization is
a simple syntactic transform. In a program that has been
transformed to provide addresses, random variables get
their values by looking up the value that is stored in the
global database at their address. Thus, to enforce that

Algorithm 6 Transformed version of the Bher program
shown in Algorithm 5. á1 to á4 are the names generated
for function applications.

((lambda (addr)
(begin

(define geometric
(lambda (addr p)

(if (flip (cons ’a1 addr) p)
1
(+ (cons ’a2 addr)

1
(geometric (cons ’a3 addr) p)))))

(geometric (cons ’a4 addr) 0.7)))
’(top))

two random choices always have the same value, we
make sure that the address they receive is the same. To
achieve this, the mem case of the addressing transform
builds a function that captures within its closure the ad-
dress of the mem creation and uses this address (extended
by any function arguments) instead of the address pro-
vided to the function when it is applied.

The Church program shown in Algorithm 5 and its trans-
formed version (Algorithm 6) illustrate the address com-
putation that is induced by the syntactic transform. The
program defines a simple geometric distribution with a
potentially unbounded number of random choices, each
of which gets a unique address. When we propose to
change the value of the flip that controls the recur-
sion depth, we want to reuse as much of the existing
trace as possible. An example of such a trace is shown
in Figure 5. Note that apply nodes (shown in green) are
the only place where addresses change and that nodes
that refer to the same syntactic place (e.g. the two blue
(flip p) nodes) have different addresses when they oc-
cur in different places in the trace. A change to the re-
turn value of such a flip does not affect the addresses of
the choices “above” it. Thus, any randomness stored for
these choices persists across the change.

A major virtue of source-to-source transformations is
simplicity and compositionality. To illustrate this point,
we now sketch a complementary transformation, eager
style to lazy style, that can be used to avoid unnecessary
computation. As shown in Figure 4, we delay expressions
that must not necessarily get evaluated—for example, ar-
guments to compound functions—and force expressions
that are always evaluated—operators, for example. To
delay an expression E, we wrap it in (mem (lambda ()
E)). Thus, we ensure that it always returns the same re-
sult when evaluated multiple times. To force a value, we
check whether it is delayed and if it is, we simply apply
the memoized function stored in the value and recurse.

This difference in simplicity manifests itself in the code
base of the two projects. While the MIT-Church imple-
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(geometric 0.3)
→ 2 (p=-1.561)

 '(top) 

apply
 → 2 (p=-1.561)

'(a5 top)

geometric
 → procedure (p=0.0)

'(top)

0.3
 → 0.3 (p=0.0)

'(top)

(if (flip p) 1 (+ 1 (geometric p)))
 → 2 (p=-1.561)

'(a5 top)

(flip p)
 → #f (p=-0.357)

'(a5 top)

(+ 1 (geometric p))
→ 2 (p=-1.204)

'(a5 top)

apply
→ #f (p=-0.357)

'(a1 a5 top)

flip
→ erp (p=0.0)

'(a5 top)

p
→ 0.3 (p=0.0)

'(a5 top)

apply
→ 2 (p=0.0)
'(a2 a5 top)

+
 → primitive (p=0.0)

'(a5 top)

1
 → 1 (p=0.0)

'(a5 top)

(geometric p)
→ 1 (p=-1.204)

'(a5 top)

apply
→ 1 (p=-1.204)

'(a3 a5 top)

geometric
 → procedure (p=0.0)

'(a5 top)

p
 → 0.3 (p=0.0)

'(a5 top)

(if (flip p) 1 (+ 1 (geometric p)))
 → 1 (p=-1.204)

'(a3 a5 top)

(flip p)
→ #t (p=-1.204)

'(a3 a5 top)

1
 → 1(p=0.0)
 '(a3 a5 top)

apply
 → #t (p=-1.204)
'(a1 a3 a5 top)

flip
 → erp (p=0.0)

'(a3 a5 top)

p
→ 0.3 (p=0.0)

'(a3 a5 top)

Figure 5: Example of an execution trace for the geometric sampler defined by Algorithm 5. Each node is annotated with
its expression, value, log probability, and address. Applications (blue nodes) have subtraces for operator, operands, and
for the application of operator to operands (apply, green nodes; dashed border indicates a random choice).

mentation has about 11,119 lines of Scheme code, Bher
consists of only 1,658 lines of code.

3.1.2 Experiments

We have tested inference performance in MIT-Church
and Bher on Hidden Markov Models and Latent Dirichlet
Allocation (Figure 6). In both cases, we conditioned on an
observation sampled from the model. For each HMM, we
generated a sentence of length 15. For LDA, we used 10
topics, 10 words per document, and 30 possible words,
varying the number of observed documents. All experi-
ments use the optimizing compiler Ikarus [3].

On the HMM model, Bher outperforms the MIT-Church
interpreter. On the LDA model, Bher shows better per-
formance at smaller problem sizes whereas MIT-Church
scales better to larger instances. This difference in scal-
ing is due to (1) reuse of cached computation in mem and
(2) computational short-circuiting in MIT-Church. In the
process of updating a trace after a proposal has been
made, MIT-Church can detect that the information flow-
ing into a function application has not changed; in this
case, it does not recompute the return value. Since mem
is transformed away by the compiler, perhaps there is
a source transformation that results in similar reuse of
computation. This is an area of future research.

3.2 EXAMPLE: STOCHASTIC MATLAB

We now illustrate our technique to create a new,
imperative probabilistic programming language called
“Stochastic Matlab,” which can take advantage of Mat-
lab’s rich native libraries and toolboxes, and its paral-
lelization, profiling and debugging support.

To rewrite f , we used the imperative ERP naming specifi-
cation as outlined in Fig. 2. We implemented the rewriter
using a parser developed with code from the open-source
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Figure 6: Inference performance for the HMM (10,000
samples) and LDA model (1,000 samples).

Octave project [2]. ERP names were rewritten to deter-
ministic functions using a MEX-based database. Remain-
ing code was implemented in pure Matlab.

We now present a case study that relies on a determinis-
tic GPU-based MEX function. The point is twofold: first,
to show how easy it is to mix arbitrary deterministic el-
ements with stochastic ones—reusing complex external
libraries—and second, to show how easy it can be to cre-
ate complex models with a few simple commands.

Our example is a small (but real) application of inverse
geological modeling. Layers of rock and sediment are de-
posited over millions of years to create a volumetric cube
of rock with porosity that varies according to the geome-
tries of the layers. Given this forward model, we wish to
condition on a given volume, and recover a description
of the individual layers that built up the volume.

Figure 7 shows the model, which generates a rock vol-
ume by first sampling parametric descriptions for each
layer (the details are not shown; layers are described as
a weighted set of basis functions), and then “rendering”
them into a porosity volume (with Gaussian noise added
at each voxel). The render_layers function encapsu-
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A layer model of rock porosity

function dp_render_rock( data )
num_layers = poissrnd();
dp_sample_layer = dpmem( @sample_layer, 1.0 );
for i=1:num_layers

layer(i,:) = dp_sample_layer();
end;
rock_volume = render_layers( layers );
data = rock_volume + randn( size(rock_volume) );

return;
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Figure 7: Results on modeling rock porosity.

lates the MEX/GPU-based renderer. Given this model, we
perform inference using tempered MCMC, conditioning
on the data shown in Fig. 7. A sample from the posterior
shows a reconstructed volume (also shown in Fig. 7) that
closely matches the true volume—the program has suc-
cessfully inferred a parametric form for each layer.

The program calls a function named dpmem, a stochas-
tic memoizer similar to that found in Church. dpmem
accepts a function representing a base measure and a
concentration parameter, and returns a new function
which samples according to a Dirichlet process (DP). We
use this to create a DP in “layer space,” where param-
eters of layers can be shared. Fig. 7 (lower left) shows
a comparison of inference with and without the dpmem:
shared layers enable the inference engine to find higher-
likelihood models faster. Hierarchical DPs are equally
easy: we could (for example) let f=dpmem(@randn,1.0),
and g=dpmem(@f,1.0) to create an HDP with a Gaussian
base measure. We consider such flexibility in defining
models—combined with the rich libraries of Matlab—to
be the major virtue of our approach.

4 RELATED WORK

Our MCMC algorithm is a new implementation of the
Church MCMC algorithm [4], and is similar to the algo-
rithm used in BLOG [7]. However, we provide a simpler
and more uniform approach to constructing such algo-
rithms for new languages, with small, clean code bases.

The closest related work is that of Kiselyov and Shan [6],
who share the goal of transforming standard languages

into probabilistic versions with little interpretive over-
head. They use delimited continuations to control ran-
dom choices without explicit choice naming. However,
their technique is only applicable (prima facie) to enu-
meration or importance sampling, not MCMC.

Other related approaches include BUGS [16], HBC [1],
and Infer.NET [8]. BUGS is not transformational (it sim-
ply loads a data structure into memory from a config file),
but the implementations of both Infer.NET and HBC are
comparable to our approach. Infer.NET uses a compli-
cated transformation to compile csoft to C#. HBC com-
piles from a config file to C, but the specification lan-
guage used by HBC is not a full-fledged language. We
consider our approach simpler and more general.

With respect to modeling flexibility, our approach pro-
vides a simple dynamic knowledge-based model con-
struction, which allows unbounded models, including
complex recursions, to be handled efficiently. Models
such as the naive implementation of the geometric dis-
tribution in Bher (Alg. 5), the gamma/randn example in
Stochastic Matlab (Alg. 4), and nonparametric distribu-
tions such as the Dirichlet Process (Alg. 7) cannot be
specified in these other languages.

A performance comparison between these languages is
important, but beyond the scope of this paper. A care-
ful comparison must account for issues such as mixing
rates, initialization values, differences in parameters of
proposal kernels, etc. and so we have explicitly limited
this paper to an explanation of the technique, with com-
parisons reserved for a longer future paper.

5 CONCLUSION

We have described a lightweight implementation tech-
nique for probabilistic programming languages. The
method is simple and fast, and the resulting languages
permit a great deal of flexibility in the specification of
distributions by mixing stochastic and deterministic el-
ements with arbitrary language features (such as objects,
inheritance, operator overloading, closures, recursion, li-
braries, etc.). Our example implementations have com-
pact code bases and reasonable inference speed.

The main directions for improvement are better mixing
and faster inference. Because source-to-source transfor-
mations are often compositional, more transformations
could be applied to enhance performance. These could
reduce redundant computation between traces, generate
compound proposals, or implement constraint propaga-
tion for initializing conditioners. Future work will inves-
tigate these issues, as well as the possibility of new lan-
guages, such as stochastic Python.
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