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Introduction

A range of work in applied machine learning, psychology, and social science involves inferring a
person’s preferences and beliefs from their choices or decisions. This includes work in economics
on Structural Estimation, which has been used to infer beliefs about the rewards of education from
observed work and education choices [[1]] and preferences for health outcomes from smoking behav-
ior [2]]. In machine learning, Inverse Reinforcement Learning has been applied to diverse planning
and decision tasks to learn preferences and task-specific strategies [3l 4]]. Large-scale systems in
industry also learn preferences from behavior: for example, people’s behavior on social networking
sites is used to infer what movies, articles, and photos they will like [5].

Existing approaches to inferring human beliefs and preferences typically assume that human behav-
ior is optimal up to unstructured “random noise” [0, 7]. However, human behavior may deviate from
optimality in systematic ways. This can be due to biases such as time inconsistency and framing
effects [8, 9] or due to planning or inference being a (perhaps resource-rational) approximation to
optimality [[10, [11]]. If such deviations from optimality are not modeled, we risk mistaken inferences
about preferences and beliefs. Consider someone who smokes every day while wishing to quit and
regretting their behavior. A model that presupposes optimality up to noise will infer a preference
for smoking. Similarly, consider someone who always eats at the same restaurant and never tries
anywhere new. One explanation is that the person has strong prior beliefs about the (low) quality of
other restaurants; however, another explanation is that the person fails to fully take into account the
information-value of trying a new restaurant.

This paper explicitly models structured deviations from optimality when inferring preferences and
beliefs. We use models of bounded and biased cognition as part of a generative model for human
choices in decision problems, and infer preferences by inverting this model [[12]. We are not primar-
ily interested in investigating models of bounded cognition for their own sake, but instead in using
such models to help accurately infer beliefs and preferences. We aim to highlight the potential value
of models of bounded cognition as tools to aid inference in major applications in social science and
in machine learning.

This paper focuses on inferring preferences (rather than beliefs) and bases inferences on observed
choices in sequential decision problems (MDPs and POMDPs) [[13]. We model the following types
of agents:

1. Time-inconsistent (hyperbolic-discounting) agents, which are based on standard models
of temptation, procrastination, and precommitment in psychology [18 14} 15]].

2. Agents that use Monte Carlo approximations of expected utility, which are related to
sampling-based approximate inference and planning [16].

3. Myopic agents, which have short planning horizons.

4. Bounded Value-of-Information agents, which approximate value-of-information compu-
tations and have been used to investigate human performance in POMDPs [17].

We perform Bayesian inference over the space of such agents to jointly infer an agent’s preferences,
beliefs, and their bounds or biases from observed choices.



Computational Framework

This section describes the generative models of bounded and unbounded agents that we use to infer
preferences from observed choices. We first describe the structure that is common to all of our
agents. We then show that varying different parts of this structure lets us construct agents with
different constraints. Finally, we describe how to use these models to infer preferences.

Agent structure

We treat an agent as a stochastic function that returns an action a € A, denoted by C: @ — A
(“choice function”). The structure of the agent is given by a mutual recursion between C' and an
expected utility function, EU: A — R. Both functions are parameterized by the agent’s state, ,
which has a form that varies depending on agent type. To refer to the probability that C' returns a,
we write C'(a; p).

Agents choose actions in proportion to exponentiated expected utility (softmax):
Cla; p) o< e@BU(@m) (1)

The noise parameter oz modulates between uniformly random choice (o = 0) and perfect maxi-
mization (as a — o0). Expected utility depends on current and future utility; future utility in turn
depends on the agent’s simulation of its future internal states and choices:
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To fully define an agent type, we have to specify how the agent computes immediate utility (U), how
it predicts its future internal state for simulation of future choices and expected utility (M), and how
it modifies the state when it gets passed to the choice function (h).

Agent types

The two optimal agents we consider as a basis for bounded agents are the standard ones used in
MDP and POMDP settings (Figure [I)). In the MDP setting, the agent’s internal state corresponds
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Figure 1: Different ways of filling in the components of Equation [2f result in different kinds of
bounded and unbounded agents. p refers to the agent’s internal state, U to utility, M to the function
used by the agent for a single-step update of its internal state when simulating the future, and A to
a (potential) modifier of internal state for the purpose of simulating future choices. Other combina-
tions, such as POMDP + bounded VOI + discounting, follow analogously.



to a world state s € .S, immediate utility is computed using a utility function on state-action pairs,
U: S x A — R, and transitions on the agent’s internal state correspond to simulated world state
transitions, 7: S x A — S. In the POMDP setting, the agent maintains a distribution ps on world
states together with a current observation o, calculates immediate utility by averaging over likely
world states, and updates its internal state by updating p, on the current observation and action, and
simulating a next observation. (To simplify notation, we have folded the transition function into p;.)

The bounded agents additionally keep track of a delay d that reflects how far into the future a given
iteration of the planning recursion happens. The myopic agent simply assumes that all utilities are 0
when the delay exceeds some constant k,,. This corresponds to planning with k,,-step lookahead.
The agent with hyperbolic discounting discounts future utility by a multiplicative factor T}chd’
where k;, > 0 controls the discount rate. This may influence both choice and utility prediction
(“Naive agent”), or only utility prediction (“Sophisticated agent”) [15]. The agent with bounded
value-of-information only simulates belief updates when d < k,,;, and (mistakenly) assumes that
any subsequent observations will not result in belief updates, thus exhibiting a form of time inconsis-
tency. Finally, we can turn any of these agents into an approximate Monte Carlo agent by replacing
the expectation in Equation [2] with an average over a finite number of samples.

Preference inference

By combining all of the agents above, we create a large space of possible agents with many param-
eters to be learned. In our examples (next section), we perform inference on subsets of this space.
Here we illustrate inference for Example 3, where we infer the latent parameters for a “POMDP +
Bounded VOI” agent from an observed sequence of actions. The parameters are a utility function
U, prior ps, VOI bound k,,;, and noise parameter c. Note that, when k,,; is greater than the total
number of time steps, the agent is equivalent to an optimal POMDP agent. An agent is defined by
a tuple 0 := (ps, U, kyoi, @), and we perform inference over this space given observed actions. The
posterior joint distribution on agents conditioned on action sequence ag.r is:

p(0lao.T) o< p(ao.T|0)p(0) 3)

The likelihood function p(ag.r|@) is given by the multi-step generalization of the choice and ex-
pected utility functions corresponding to 6. For the prior p(6), we use independent uniform priors
on bounded intervals for each of the components. In the following, “the model” refers to this gen-
erative process that first samples an agent (including utility function), then choices given the agent.
We implemented all agents as probabilistic programs. See Figure 4| for an illustration.

Examples of Preference Inferences

We now contrast preference inferences using models that assume optimality with inferences from
models that allow for bounded agents. We exhibit decision problems where we expect the assump-
tion of optimality to be particularly inappropriate. These problems may appear overly simple and
hence unrealistic. However, if assuming optimality is problematic for very simple problems (with
few states and parameters), then it is likely to be problematic for complex problems as well; complex
problems are likely to “contain” simple problems in ways that preserve their problematic features.

Examples 1 and 2 below are MDPs and contrast optimality with time-inconsistent and Monte-Carlo
agents respectively. Example 3 (below) involves POMDPs and compares optimality with myopic
planning and Bounded VOL. All “bounded” models (see dotted curves in Figure [2) include the op-
timal model as a special case, hence inference implicitly involves model selection. This means that
our approach does not assume that bounded models provide a superior fit to agent behavior.

1. Procrastination (hyperbolic discounting)

Consider the following decision problem on which some time-inconsistent agents will “procrasti-
nate” [cf. |18, [19]]:

A friend is looking for comments on a paper. You know your comments would im-
prove their paper and you assign positive utility to this outcome. However, writing
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Figure 2: Examples of inferences about utilities for optimal and bounded agents

the comments has negative utility to you because it is tedious and will take a whole
day. The paper will be submitted in 7" days and comments are more helpful earlier.

There are two decisions to make. First, you decide whether to promise your friend that you will offer
prompt comments, i.e., move from “do nothing” to “promise” node in Figure (3| After you promise,
they send you the paper and the next day you decide whether to “do work” (which results in the
“help friend”” outcome) or to stay in the “promise” state. There is no cost to staying in “do Nothing”,
but there is a tiny cost of —e for every day in “promise”. Doing the work has a one-time cost of —1
and, after you have done the work, you receive +R for every day until 7.

Suppose the agent moves to “promise” but never moves to “help friend”. This results in an out-
come that is worse than staying at “do nothing” the entire time. We call this procrastinating. The
optimal agent (without softmax noise) never procrastinates. It either does the work without unnec-
essary delay or does nothinﬂ Time-inconsistent agents can procrastinate depending on R and the
discount rate kj. The Naive discounting agent hallucinates that it will “do work” after first moving
to “promise”, but once actually at “promise”, it delays the work indefinitely.

We set T' = 8 and condition on the observation that the agent procrastinates, i.e. moves directly to
“promise” and then stays there for the remaining 7 days. The goal is to infer R (the utility of helping
the friend). We compare the “optimal” model (no time-inconsistency) to a “potentially discounting”
model that includes both Naive discounting and optimal planning. Figure |[2a shows that under both
models, the expected posterior value of R is low. However, the value for the discounting model is
higher, as it can explain away the agent’s not helping by a higher discount rate k;,. Additionally (not
shown), we infer high noise when we assume optimality, since the optimal agent only intentionally
endures the —e cost of moving to “promise” if it will then do the work. Since the agent did not do
the work, it must have high noise if it is (otherwise) optimal.

2. Neglect of low-probability events (Monte Carlo approximation)

Consider the following problem:

John is hiking and has to choose between climbing up to the 7all peak or the Short
peak. The Tall peak is more spectacular, but comes with a small probability pg
of disaster (e.g. death or injury). We assume John has no uncertainty about his
utilities for Tall and Short, and that John knows p,.

We aim to infer John’s utility for climbing the Tall peak, Uy, relative to the cost of disaster. We com-
pare an “optimal” model (which solves the MDP exactly) with a Monte Carlo model (“MC”) where
the agent samples N times from the state transition function to approximate an action’s expected
utility. We set a low prior on U; being close in magnitude to the cost of disaster. The MC model
has a broad prior on N and includes planning behavior indistinguishable from optimal as a special
case. We condition on the observation that John moves directly to the Tall peak. Figure [2b] shows
the posterior mean for U, as a function of the probability of disaster p;. For both models, as pg

'Tt does the work if R(T — 2) > —(1 + ).



increases we infer a higher Uy (as Tall is chosen despite increasing risk of disaster). The MC model
infers consistently lower values for Uy. It partially explains away John’s choice by positing small IV,
which will sometimes lead to overestimates of the expected value of climbing Tall.

3. Failure to explore (myopic and Bounded VOI agents)

Human performance on bandit problems has been studied extensively [20]. For example, Zhang
and Yu [17] show that human performance in a low-dimensional bandit problem is sub-optimal
and is better captured by the Knowledge-Gradient algorithm than by optimal play. The Knowledge-
Gradient algorithm is analogous to our Bounded VOI agent with one level of lookahead. This work
suggests that assuming optimality may lead to inaccurate inferences even for low-dimensional bandit
problems. For higher-dimensional problems, optimal play is intractable and so any realistic agent
will use approximations. Consider the following bandit-style problem:

You get out of a meeting and choose between two nearby restaurants, A and B.
You know the utility U 4 exactly (e.g. A is a chain) but are uncertain about Upg. For
the next 7" months, you have meetings in the same place and will face the same
choice between A and B.

The goal is to infer Uy, the agent’s utility for A. We run inference repeatedly for increasing values of
T (i.e. we increase the expected value of exploration). For each T', we condition on the observation
that the agent chooses restaurant A for each of the 7" months. That is, the agent never explores, even
as T grows.

The “optimal” inference model assumes that the agent solves the POMDP perfectly given their
prior on Up. On the “potentially myopic” model, the agent can either plan optimally or else plan
myopically with the time horizon set to one trial. As T increases, exploration becomes more valuable
to the optimal agent. Assuming optimality therefore leads to progressively higher inferred values for
U 4. In contrast, a myopic agent will not explore more as 71" increases, resulting in a flatter curve in

Figure

The Bounded VOI model with k,,; > 0 behaves optimally for this bandit-style problem. But con-
sider the following elaboration:

You are choosing somewhere to eat, but there are no restaurants nearby. You can
head to restaurant A (which again has known utility U 4) or try somewhere new.
Most restaurants are worse than A, but some might be better. Before trying a
restaurant you ask for advice in two distinct steps. First you ask which neighbor-
hood has the best restaurants and later you ask a local of that neighborhood which
restaurant is best. When you try a restaurant you learn its utility. There are no
costs to getting advice and your distance traveled is not a constraint. As above,
this choice is repeated for each of T months.

The goal for inference is again to infer U4. We fix the problem parametersE] and vary T'. The ob-
servation we condition on is the agent choosing A every time (same as before). The Bounded VOI
agent with k,,; = 1 deviates from optimal on this problem. This agent models itself as updating
on the first question (“which neighborhood?””) but neither on the second question nor the direct ob-
servation of restaurant quality. It can fail to explore even when T is high (without having a strong
preference for A). The Bounded VOI model only matches optimal behavior when k,,; > 2. Figure
[2d) compares a “potentially bounded VOI” model (which includes the optimal model as a special
case) with the optimal model.

2We assume two neighborhoods with two restaurants each. The agent has a prior over the utility of unknown
restaurants such that most are bad. Our inference prior on U 4 is such that we think it likely that the agent expects
the best unknown restaurant to be better than A.
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Figure 3: Transition graph for Example 1 (procrastination). Nodes represent states; u is the utility
the agent receives for every day spent at the state. Arcs indicate possible (uni-directional) determin-
istic transitions between states. The agent takes T' = 8 actions, one for each day. We condition on
observing the agent moving directly to “Promise” and staying there for the remaining 7 days.

var agent = function(state, delay, timeLeft) {
return Marginal (function () {
var action = uniformDraw (actions)
var eu = expUtility(state, action, delay, timeLeft)
factor (alpha * eu)
return action
}
}

var expUtility = function(state, action, delay, timeLeft) {
var u = discountedUtility(state, action, delay, K)
if (timeLeft == 1) {
return u
} else {
return u + expectation (INFER_EU (function () {
var nextState = transition(state, action)
var nextAction = sample (agent (nextState, delay+l, timeLeft-1))
return expUtility (nextState, nextAction, delay+l, timeLeft-1)
1)

}

var simulate = function (startState, totalTime) {
var sampleStateSequence = function (state, timeleft, history) {
if (timeLeft==0) {
return history
} else {
var delay = 0
var action = sample (agent (state, delay, PLANNING_HORIZON))
var nextState = transition(state, action)
return sampleStateSequence (nextState, timeLeft-1, update (history, nextState))
}
}
return Marginal (function () {
return sampleStateSequence (startState, totalTime, initHistory(startState))

}

Figure 4: Implementation of a generative model for agents in the MDP setting. The language is
WebPPL (with minor implementation details omitted) [21]]. Note the mutual recursion between
agent and expUtility: the agent’s reasoning about future expected utility includes a (po-
tentially biased) model of its own decision-making. The function Marginal computes exact
distributions over the output of its function argument. The factor statement implements soft
conditioning—it is used here for softmax “planning-as-inference” [22]]. To generate agent behav-
ior, we specify a decision problem by providing implementations for t ransitionandutility.
We then call simulate (startState, totalTime). For exact planning, we set INFER_EU
toMarginal. For the Monte Carlo agent, we set INFER_EU to a function that computes sampling-
based approximations. If the constant K is set to zero, the agent does not discount (and so is optimal);
otherwise, the agent performs Naive hyperbolic discounting.
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