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Abstract

How could an agent learn and reason in a complexly structured,
stochastic world? This problem is at the center of both artifi-
cial intelligence and psychology. One candidate answer to this
question is that both learning and reasoning can be explained as
probabilistic inference over a language-like hypothesis space for
generative models. The goal of this thesis is to describe what
makes this approach plausible and to demonstrate the learning of
generative models from structured observations in a simple world
consisting of stochastic, tree-generating programs. In order to
make program inference feasible, I derive a new class of adaptive
importance sampling algorithms for probabilistic programs that
let us compute the likelihood of structured observations under a
given generative model. Using this algorithm in combination with
Markov Chain Monte Carlo methods, I quantitatively show that
we can reliably infer generative models from observations in our
demonstration world.
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Chapter 1

Introduction

As part of our project of understanding the human mind, we would
like to explain how physical systems can exhibit what we call learn-
ing and reasoning. In order to solve problems that are difficult
given our current technologies and knowledge, we would like to
build systems that learn and reason. These are the two motiva-
tions I have in mind when I talk about an explanation of learning
and reasoning, and the success of such an explanation shall be
determined by its contribution to these larger endeavors.

I take it as a working hypothesis that any such explanation
must be a reductive explanation. What I mean by a reductive
explanation is an explanation that shows how more elementary
building blocks must be combined to create a system that ex-
hibits the properties in question. An explanation of a mental
phenomenon like learning and reasoning can be reductive only if
it explains intentional terms like belief using more basic, well-
defined vocabulary.

In the following, I will first illustrate the abilities I want to
explain in my current and future work, then outline the approach
to understanding learning and reasoning that I take and describe
the extent of the present work.

The question I want to answer is this: How could a system,
be it a human or a machine, learn and reason in as complex a
world as ours? How do we discover and make use of structure in
raw sensory data? What we see is not a mess of colored pixels,
what we hear is not a rush of uninterpreted sound waves — what
we perceive carries meaning. Our perceptions have connotations
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and make sense not in isolation but only when placed into a larger
model of the world. Phrasing my question in a way that carries
more assumptions, I ask: How can a system acquire — learn —
such a model of the world from sensory data, and how can this
model be used to make predictions about how the world works and
to judge which statements about the world are true and which are
not — to reason?

Examples abound. Children learn to recognize and catego-
rize objects. They reason about how objects behave using naive
physics and knowledge about causality, both of which might be
learned from sensory data. They grasp the concept of a number,
learn about social relations, and learn the principles of language
understanding and production. Not unlike children, we scientists
infer the principles of our fields from experimental data. Using
concepts we create to transfer knowledge across situations, we
reason about the behavior even of systems we never observe in
person. The predictions of both children and scientists fare bet-
ter than those of any artificial system we have constructed so far,
and they do so systematically: information processing that leads
to successful learning and reasoning has method. What is this
method?

In order to learn more about this method, I will look at simple
systems and explore how incremental1 learning can take place in1By “incremental learning”, I refer

to learning that in some way builds
on what has been learned before.

such systems. For example, it is obvious that the trees in each row
of figure 1.1 belong to the same class. What is the method we use
to determine that this is the case? The formal basis I build on to
answer questions like these will be Bayesian probability. Before I
say more about the extent of the current work, I will explain why
I have chosen the approach of looking at simple systems.

It is an almost tautological truth that we cannot understand
complex systems as long as we do not understand simple systems.
Therefore, the practical part of this work is limited to learning
and reasoning in a simple toy world that we do understand com-
pletely. There is another reason for choosing a simple system,
and this one is based on the idea of reductive explanation. If
simple and complex systems that learn and reason are composed
of similar building blocks, composed in a similar manner, then
understanding simple systems will bring us a long way towards
understanding more complex ones. The constructive counterpart
of (iterated) reductive explanation is stratified design. Stratified
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design denotes the idea that complex systems should be designed
as a sequence of layers, where each layer is described by a lan-
guage appropriate to that level of detail. If understanding a sim-
ple system helps to understand more complex ones, then building
a simple one may be useful for building more complex ones if the
sequence of layers is similar. This approach is fundamental to the
practical part of this work, where I first extend the probabilistic
programming language Church, then use this language to describe
program inference.

Research on learning and reasoning blurs the separation be-
tween methodology and content. Not only do we approach the
problem by looking at the building blocks that are part of the
larger solution, but the idea of using building blocks — the idea
of compositionality — becomes a building block itself. The more
general idea of incremental learning will be one of the key features
of my approach. Children’s learning takes time. For example,
when children learn the number words (which tends to start at
an age of two), they spend approximately six months in a one-
knower stage during which they know that one means one and if
asked to give one item, they give one, otherwise a handful. They
then spend about nine months in a two-knower stage, about three
month in a three-knower stage and then usually make the induc-
tive leap and use counting to give you any number of items you
request ([Wyn90, Wyn92, PGT]). It is not a far-fetched hypoth-
esis that each step builds on what has been learned before and
reuses that which does not need to be changed. There is more
than one way to be incremental: Learning can be incremental in
the sense that, in the construction of new mental models, existing
models can be used either as the basis that is being modified or
as a building block. More generally, inference can be incremental
in the sense that, over time, a learner can accumulate procedural
knowledge on how to best learn and reason in certain situations.
In my work, I want to formalize both ways of being incremental.

Any attempt at a reductive explanation must be built on a firm
basis or it cannot succeed. Words need to have precise meanings
and where this is not possible, programs and mathematics need to
provide clarity. The foundation my approach builds on is Bayesian
probability theory and, more specifically, probabilistic inference in
generative models, a notion that I will explain and justify in the
background chapters.
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Taken together, the approach to learning and reasoning that
I consider is the following: Compositional representations that
mirror the compositional structure of the world are learned incre-
mentally, with each step building on the components that were
learned before. On a computational level, probabilistic inference
explains the principles behind both learning and reasoning. These
thoughts are not new (as will become clear in the background
chapters and in the discussion of related work), but I believe that
an exploration of these principles using a simple learner in a in-
terestingly structured toy world will nonetheless prove insightful.

I will now state the extent of the current work using termi-
nology introduced by Marr [Mar82]. He distinguishes three levels
that can be used to analyze a computation: The computational
level that describes the goal of a computation and the logic behind
its strategy, the algorithmic level that describes the representa-
tion of input and output and the algorithm itself, and the level
of implementation that describes how the computation is realized
physically.

There are two sides to this work and, consequently, two sides
to its claims. Any claims about the human mind are to be taken
as claims on the computational level, i.e. about what the overall
strategy is that the human mind uses when it engages in learning
and reasoning. When I talk about how artificial systems could
learn and reason, my claims are not only computational-, but also
algorithmic-level claims: I will describe specific algorithms and in
as far as I claim that these may constitute part of systems that
learns and reasons about interesting problems, these claims should
be evaluated literally, not just as claims about the more general
principles behind the algorithms.

In the next chapter, I will describe the philosophical, statistical
and computational background that provides the foundation on
which the actual model of learning and reasoning will be built,
and which sheds light on the scientific context that gave rise to
this approach.
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Figure 1.1: Examples for structured observations
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Chapter 2

Background

2.1 Representationalism

In his encyclopedic introduction to cognitive science, Paul Tha-
gard [Tha08] suggests that the central hypothesis of the field is
“that thinking can best be understood in terms of representational
structures in the mind and computational procedures that oper-
ate on those structures”. Cognitive scientists disagree about the
nature of this representation, about the extent to which it is im-
plicit and explicit, and about what exactly “implicit”, “explicit”
and “representation” mean in the first place. However, the basic
idea is clear: In order for a system to systematically derive true
statements about an object that is out there in the world and
that is not currently perceived, the information that is necessary
to derive true statements must be found somewhere within that
system1. In order to think about something, there must be some 1As a consequence, if we want to

find out more about what is
represented, we can look at the
types of true statements that can
be derived systematically in
absence of perception. The
information that is necessary to
make these statements must then
be part of the internal
representation.

mental intermediary of the object of thought. This is what I will
call the representation of the object.

This notion of representation is a very broad one. The reasons
for choosing this interpretation are that it includes all the more
constrained versions as a subset, that my primary concern is to
learn which constraints there are on any thinking system, and
that I therefore do not want to prematurely exclude systems that
process information in a way that differs from how humans do
it. In the next section, we will see that there are much stronger
constraints on which kinds of representations are suitable to serve
as the objects of thought in worlds like ours.
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By representational medium, I will refer to a structure that
contains representations, that is, information about the external
world2. We can talk about these structures on different levels2By using the term “external world”,

I do not want to exclude the agent
that has these representations; it
may well represent itself.

of abstraction, and depending on which system we are talking
about, we might prefer different views. For example, we might
talk about how neurotransmitter levels represent something, i.e.
talk about the implementational level, we might talk about how
the connection weights in an artificial neural network represent
something, i.e. talk about the algorithmic level, or we might talk
about how certain data structures represent something, i.e. talk
about the computational level. My considerations in the next
section will mainly be on a computational level, because the con-
straints I want to talk about can be expressed most clearly using
computational language.

2.2 A Language of Thought

What do we know about how these representations look like for
human beings, and what can we infer about what they should
look like in any thinking system? This is the question this section
deals with, and in doing so I will follow [Fod76] and [Fod07].

There are at least three properties that any representational
medium needs to have in order to entertain complex thoughts
about the real world and to use them in reasoning: Semanticity,
productivity, and systematicity. I will first describe what each of
these refers to, then show how another property, compositionality,
explains productivity and systematicity, and argue that it is rea-
sonable to call any representational medium that exhibits these
properties a language.

Semanticity means that the medium must have a capacity to
describe real and possible states of affairs, that is, it must have a
means for truth and reference. If there is no way for the medium
to represent what is real or possible, then thinking about what is
real and possible cannot be done using this medium.

Productivity means that there must be no in-principle, i.e.
computational-level, upper bound on the complexity of a thought
that can be expressed in the representational medium, just like
there is no in-principle upper bound on the complexity of a sen-
tence in natural language3. This captures the intuition that a3We can always form new sentences

from components:
The boy who likes a girl smiles.
The boy who likes a girl who likes
a boy smiles.
The boy who likes a girl who likes
a boy who likes a girl smiles.
The boy who likes a girl who likes
a boy who likes a girl who likes a
boy smiles.
...

cognitive agent needs to have the competence to think any one
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of the infinitely many distinct thoughts that it could potentially
think. Any in-principle boundary on the complexity of thoughts
would give rise to the question what it is that makes thoughts
that are only a little more complex suddenly unthinkable.

Systematicity means that the ability to entertain certain thoughts
must be intrinsically connected to the ability to entertain certain
others. For example, if I can entertain the thought that Spock
does not like Italian food, then I must also be able to entertain
the thought that Spock likes Italian food, otherwise it is ques-
tionable whether I can understand what the negated version of
the thought means. Likewise, if I can entertain the thought that
Gillian likes wales, I must also be able to entertain the thought
that wales like Gillian.

In thinking about what it is that makes a representational
medium productive and systematic, our current best (and only)
explanation is that there is another property that a representa-
tional system suitable for thought must have and that underlies
these two phenomena: namely, that the semantics of the repre-
sentations is (to some extent) compositional.

Compositionality usually denotes the claim that the meaning
of a complex expression in a representational medium is (up to
a limited number of exceptions) fully determined by its structure
and by the meanings of its constituents [Sza08]. However, it is
doubtful that compositionality alone can fully explain the mean-
ing of an expression in use [Cow]. In many situations, it seems
to be the inferential role of an expression (i.e. how the expres-
sion is used) that determines its meaning. Therefore, I will take
compositionality only to mean that the meaning of a compound
expression is determined, among other things, by the meanings of
its constituents4. 4“The meaning of x” may not be a

coherent notion. It may be that
we always need to state a context
(e.g. “the meaning of x for
inference”) if we want to make this
notion precise.

Systematicity is connected to the concept of compositionality
through the fact that thoughts that are so related seem to be
composed partly out of the same semantic elements.

It is not clear that systematicity and productivity entail com-
positionality; the inference here is an “inference to the best expla-
nation” that is supported by other phenomena, e.g. the fact that
descriptions — compound symbols where each term contributes
property specifications to the overall meaning — work the way
they do [Fod07]. What we do know is that language is systematic
and productive, and that this is the case because sentences have
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constituent structure, i.e. sentences are made of smaller units that
carry meaning. If thoughts, too, are systematic and productive,
it is reasonable to suppose that this is due to their constituent
structure — in particular if we do not know of any other expla-
nation.

Taken together, what we require of a representational medium
for thought is that thoughts can be combined in a productive
way, that complex thoughts have constituents which, among other
factors, determine the meaning of the complex (or compound)
thought, that the relation between compound and constituent
thoughts is a systematic relation, and that thoughts can express
both real and possible states of affairs. This is close enough to
a description of the properties that both natural and program-
ming languages have for us to call any medium that fulfills these
properties a language of thought5.5Although it might be more

accurate to talk about a language
of computation, since we do not
distinguish conscious and
unconscious thought [Fod76]. 2.3 Generative Models

In the last section, considerations on what thoughts need to be
able to express and which principles must hold for what they can
express led us to the conclusion that any representational medium
for thought must exhibit certain language-like properties. In order
to learn more about what such a language of thought must look
like, I will now consider how it is used in thinking about the world.

Assume I give you a machine that prints money. There is a
paper tray that contains some empty paper on the left, a funnel
for liquid color on the right, three rusty iron buttons with labels
“$10”, “$100”, “$1000” on top, and a money tray on the bottom.
I explain to you that you first put paper in the paper tray, then
press your button of choice, one sheet of paper gets sucked into the
machine, you pour color into the funnel, the color is used to print
your note onto the sheet of paper, and a few seconds later, the
note lands in the money tray on the bottom. If everything works
right — I mention that the machine is from the last century and
not as reliable as the fancy new money printing machines.

You decide that our economy suffers from deflation and that
this is as good an opportunity as any to change that. Your first
attempt results in two notes, but each only has color on one side,
the other side is plain white. Not yet discouraged, you try again.
You follow my instructions, choose the $100 button, pour a bit of
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liquid into the funnel, and shortly after, look at your brand new
note. It does not look quite right — the green is much lighter than
it is supposed to be. “This is my last try,” you say, choose $10,
notice that the paper tray is empty, add some paper you brought,
and what you get is indeed a $10 note, but it is much larger than
the notes you know and it looks like the reason for this is that
it has a white margin around the actual print. What might have
gone wrong in each of these cases?

Which properties must your representation of the machine I
just described have such that you can reason — make informed
guesses — about what went wrong in each of these cases?

First, your representation must contain the relevant informa-
tion about how the system works, i.e. it must contain information
about the causal structure of the system. If your representation of
the money making machine does not contain the information that
the liquid you put into the funnel is used as a print color, then it
is hard to figure out that you might need to put more liquid into
the machine if the print is too light. Your representation cannot
just be blank black box placeholder for the machine. It must be
a model with internal structure.

Second, you must be able to use this information to think
about how this causal structure gives rise to observations. If the
information on how the machine works is there, e.g. because your
representation contains the sequence of letters that made up my
instruction sentences, but not in a form that can be used for com-
putation, then your representation will be of little advantage to
you. The details of how the machine works must be contained
within your representation — your model of the machine — in a
way that lets you estimate the sequence of events that lead to a
certain outcome. If there is uncertainty in this generative process,
then your model needs to define a probability distribution over the
different mechanisms that could take place and, as a consequence,
over the different outcomes of these mechanisms.

Third, you must be able to invert this model, i.e. given an
observed outcome, you must be able to use it to infer what the
generative process under this model looked like6. Such a process 6Your model need not accurately

mirror reality; given an
observation, you need to be able to
invert your generative model, but
what you inferred by inverting it
can be mistaken.

often contains hidden variables (or states), and it is often useful
to be able to infer these hidden variables, since they explain the
correlations and dependencies in the observations [Man09]. In the
case of the money making machine, what happens between your
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input and the output is a hidden variable. If you could guess
what exactly caused the failure, you could use your guess to your
advantage. If there are multiple ways that could result in the
same outcome and you are uncertain about which one actually
took place, then your representation needs to take this into ac-
count such that you can reason probabilistically. As we will see in
subsequent chapters, the problem of inverting a model is the main
difficulty posed by learning and reasoning in a complex, stochastic
world.

Taken together, if a model mirrors the causal structure of some
process in a way that lets us generate observations from the model
and that lets us invert the model to infer hidden variables, then we
will call it a generative model. In our world where there is much
uncertainty and possibly true stochasticity, stochastic generative
models — generative models with mechanisms that contain ran-
dom choices — will be of particular interest.

We have derived the properties of stochastic generative models
by thinking about what a representation needs to look like in
order to enable reasoning about complex processes like the money
making machine. It is therefore reasonable to assume that any
representational medium appropriate for thought in a world with
causal structure not unlike our own not only needs to have the
language-like features described in the last section, but that it
will also need the ability to concisely specify stochastic, generative
models of the external world.

2.4 Probabilistic Inference

There are two related questions that need to be answered before
we can make use of the notion of a stochastic generative model
to explain learning and reasoning: First, how can we make our
talk about generative models and, more specifically, about rea-
soning and learning with such models precise? Second, what are
the rules that reasoning must obey in order to systematically ar-
rive at true beliefs? The short answer is that we can formally talk
about generative models using probability theory and probabilis-
tic programs, and that the Bayesian interpretation of probability
theory is the normative theory for reasoning under uncertainty7.7This is not uncontested, but as

explained in this chapter, there are
good reasons to believe it.

The long answer is the remainder of this section.
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The laws of Boolean logic provide a normative theory of rea-
soning when all beliefs are either absolutely true or absolutely
false. Boolean logic constrains rational belief and reasoning in two
ways [Tal08]: First, enforcing deductive consistency constrains
which beliefs can be held together at any one point. Second, the
deductive rules of inference constrain admissible changes in belief.
For instance, the rule ofmodus ponens requires that from premises
P and P → Q, one infers Q.

If Boolean logic is the normative theory for reasoning under
certainty, then the Bayesian probability calculus is the normative
theory for reasoning under uncertainty. A central assumption of
the Bayesian probability calculus is that one’s degree of belief in
a proposition x can be represented by a real number p(x) that
is between 0 and 1, with 0 meaning “x is completely false” and
1 meaning “x is completely true”. For this reason, this view is
also called the subjective interpretation of probability. Together
with the two desiderata that, first, reasoning with these degrees
qualitatively corresponds to common sense and that, second, this
reasoning is consistent, the rules of the probability calculus are
uniquely determined. Only one set of mathematical operations for
the manipulation of plausibilities has all these properties [JB03].
Besides this line of reasoning8, there are others that come to the 8This line of reasoning is formalized

in the derivation of the Bayesian
probability calculus from Cox’
axioms.

same conclusion, the most notable being the ’Dutch book’ argu-
ment. This argument suggests that any violation of the laws of
probability leads to bad choices. For example, one might then
accept combinations of gambles that each appear fair when taken
on their own, but which guarantee a loss when taken together
[CTY06]. In summary, the Bayesian probability calculus seems to
be the natural extension of the normative laws of Boolean logic
to the realm of uncertain reasoning.

What do the laws of probability tell us about how to reason
and, in particular, about how to reason with generative models?

A useful concept will be the notion of a hypothesis space. In
a given situation and for a given model, the hypothesis space
includes all the hypotheses the model can entertain. Intuitively,
if you think about a particular event before you have observed its
outcome, then your hypothesis space of possible outcomes includes
all the outcomes you can conceive, with some being more likely,
some less. Likewise, if you think about a particular process and
have observed its outcome but how exactly the process gave rise

19



to the outcome was hidden from you, then your hypothesis space
for the hidden mechanism includes all the ways the process could
have conceivably led to that outcome, with some ways being more
likely, some less.

An idea central to the probability calculus is the evaluation of
conditional probabilities ([CTY06], [TR99]). In many cases we are
interested in the probability p(hi|d), i.e. the degree of belief in a
particular hypothesis hi (about the state of reality) given that we
have observed some data d. If we can compute this quantity for
different hypotheses hi, we can compare hypotheses and judge how
likely each is given our observations and given our prior knowledge.
We could then use this result to choose our actions such that they
take into account the different hypotheses to a differing degree. In
many cases, we can compute this quantity: Bayes’ rule (which can
be derived from the definition of conditional probability) states
how p(hi|d) can be calculated from quantities that are often known
or can be approximated:

p(hi|d) =
p(d|hi)p(hi)

p(d)
(2.1)

The likelihood p(d|hi) denotes the probability that we would
observe data d if hi were in fact the true hypothesis. In the fol-
lowing, we will almost always write down our hypotheses about
complex processes as stochastic generative models, and the prob-
lem of estimating the likelihood of observing data d given some
generative model will be of great importance.99In particular, this problem will be

the main motivation for
introducing a new class of
adaptive importance sampling
algorithms later on.

The prior probability p(hi) denotes how probable we think it
is that hi is the true hypothesis before we have observed the data
d. A particularly useful type of prior are formalizations of Oc-
cam’s razor: If the notion of simplicity can be formalized, simpler
hypotheses can be given an a priori higher probability.

The posterior probability p(hi|d) denotes our belief in h after
we have observed data d. In computing this quantity, we have
given a formal answer to the problem of inverting a generative
model that came up in the last section. Given an observed out-
come, we can compute the posterior probability of different gen-
erative models and thereby infer what the true generative model
is likely to have looked like.1010As long as we are only interested

in comparing different hypotheses,
we do not need to worry about the
denominator, p(d), since it is the
same for all hi. It serves to enforce
the constraint that the
probabilities on the right add up to
1, i.e. define a proper distribution.

If we can formalize our beliefs within the Bayesian probability
calculus — that, as we have seen above, can be derived from

20



relatively weak common sense and consistency assumptions —
then Bayes’ rule normatively determines how these beliefs need
to be updated in light of new data. Before we can implement an
agent that can learn and reason with representations of interesting
processes while following the normative rules that the probability
calculus imposes on inference, there is at least one more thing we
need to do: We need to show how we can formally write down
complex generative models.

Programming languages are our best tools for the formaliza-
tion of processes that generate values. Therefore, when I formally
talk about stochastic generative processes, I will use a probabilis-
tic programming language called Church.

Interlude: Church

Church provides a computationally universal11 notation for stochas- 11Turing completeness: Church
programs can compute every
function computable by a Turing
machine.

tic processes and the distributions over return values that they
induce ([GMR+08], [Man09]). Using Church, we can simulate
(i.e. generate samples from) the generative processes expressed in
the language both conditionally and unconditionally. A stochas-
tic generative process is represented by a procedure that makes
stochastic choices; by executing the procedure, we simulate from
the process and sample a value from the distribution on return
values induced by the process. By generalizing functions to distri-
butions and evaluation to sampling, Church contains the pure12 12pure = side-effect free

subset of Scheme, a dialect of Lisp.

In the following, I will first introduce a few concepts related to
Church that we will make use of later on, then demonstrate them
using a very simple Church program.

A Church expression describes a generative process: the mean-
ing of an expression is specified through the primitive procedures
eval, which samples from the process, and query, which samples
from the process conditionally. A Church environment is a list of
pairs, with each pair consisting of a variable symbol and a value
[GMR+08]. A Church expression together with an environment
defines a probability distribution over return values. We denote
this distribution by µexpr,env and the probability density of a par-
ticular return value v by µexpr,env(v).

Primitive procedures are deterministic functions that are bound
in from the underlying Scheme that is used to implement Church
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and that are therefore a kind of black box to Church; Church
cannot introspect the evaluation process that happens when such
a procedure is applied to its arguments. Examples for primitive
procedures are the logical operators and, or and not, operators
that deal with data structures like pair and list and arithmetic
operators like +, - and *.

Elementary random procedures (erps) are the stochastic equiv-
alents of primitive procedures. As was the case for primitive
procedures, Church does not introspect the evaluation process
of erps. Each elementary random procedure is associated with
a scoring function that returns the probability of a return value
given an environment and operand settings. Examples for erps
are flip (which throws a fair coin or, if given an argument,
a weighted coin), sample-integer, beta, gamma, uniform and
gaussian (which draw from the respective distributions).

A generative history for a (expr, env) pair is a sequence of
recursive calls to eval, and their return values, made by (eval
expr env). A (expr, env) pair thus defines a distribution over
generative histories. The distribution over return values then re-
sults from binning all histories that result in the same return value.

(and (flip) (flip)) (2.2)

In this example, we use the primitive procedure and and the
elementary random procedure flip. The expression (and (flip)
(flip)) describes a generative process: First flip two fair coins,
then return true if both come up true, otherwise return false.
There are four possible generative histories, one for each combi-
nation of return values for the flips. We get the distribution over
return values by binning the histories: There are three histories
that result in the return value false, one that results in true, and
each history has a probability of .25. Therefore, the distribution
on return values has probability .75 for false and probability .25
for true.

In this section, I have shown a precise way to talk about learn-
ing and reasoning with generative models. Probabilistic programs
formalize the notion of a generative model and the Bayesian prob-
ability calculus imposes normative constraints on inference. In the
next chapter, I will connect these ideas to the idea of a representa-
tional language of thought and describe on a computational level
what this implies for learning and reasoning
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Chapter 3

Model

In the last chapter, we have seen that thought requires a repre-
sentational medium that allows compositional, systematic, pro-
ductive representations that can represent both real and possible
states of affairs. A representational medium for thought is likely to
have the ability to express stochastic models with internal struc-
ture that explains the causal process that results in observations
and that can be used to reason backwards from observations to the
hidden causes that are out there in the world. The Bayesian prob-
ability calculus provides a normative theory for reasoning and, in
particular, for reasoning with generative models.

In this chapter, I will formally tie together these observations
to explain, on a computational level, how reasoning and learning
can occur in a complex world. This entails that we first formalize
the language-like representational medium, then explain learning
and reasoning as probabilistic inference, and finally show using
probabilistic programming how these two connect.

The representational medium can be formalized as a grammar
for probabilistic programs. Every program that can be expressed
in this grammar defines a generative model. For the purpose of
this chapter, we will assume that this grammar defines infinitely
many generative models m1,m2, ... and that at least one of these
programs captures the causal structure of whatever process we
are trying to learn well enough to be useful in predicting future
observations1. If we want to ensure that this is the case in practice 1In Bayesian reasoning, if the prior

distribution does not assign
nonzero probability to any
hypothesis that comes close to the
true hypothesis, the posterior will
not do so either.

and if we do not know what the true generative process looks
like, one solution would be to use a grammar that includes all
computable programs.
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By means of our grammar, we have specified the extent of the
hypothesis space. If the grammar includes production probabili-
ties, then we have also specified the prior distribution on hypothe-
ses, i.e. which hypotheses are more likely a priori. For example,
if our grammar is a probabilistic context-free grammar, we have
induced a sort of Occam’s razor prior: Hypotheses that are ex-
pressed by shorter programs are considered more likely a priori.

In the background chapter, we have encountered Bayesian in-
ference as a means to make talk about reasoning under uncertainty
precise and as a normative theory of this kind of reasoning. How-
ever, we have not yet made an attempt to specify what exactly is
meant by “learning” and “reasoning” when expressed in this precise
language.

Formally, what it means to learn a generative model, i.e. a
probabilistic program, from observations d = (d1, d2, ..., dn) is to
compute (or estimate) the posterior distribution p over all (in-
finitely many) generative models m1,m2, ... that can be expressed
within our language of thought, with the probability of each model
being p(mi|d) ∝ p(mi)p(d|mi).

Hereby, p(mi) specifies the prior probability we assign to the
generative model mi and p(d|mi) specifies the likelihood that this
model assigns to the observed data d. After this computation is
done, we know for each model mi how probable we think it is that
this one truly generated the data we have observed. When we want
to make predictions using what we have learned, we can use either
the generative model with the highest posteriori probability2 or2This approach is called MAP,

Maximum A Posteriori we can average the predictions of all generative models with each
being weighted according to its posterior probability. The MAP
approach is easier to compute, but, in many cases, disregards
much of what we could learn from the data and therefore we will
strive to use the fully Bayesian approach whenever possible.

By reasoning, I denote the process of determining whether a
particular proposition x is true in a real or counterfactual world
or, equivalently, whether such a world has a particular property.
When we want to reason with the posterior distribution p over gen-
erative models that we learned from our observations, we again
have two possibilities. We can either choose the less precise MAP
approach that reasons using the generative model that has the
highest posterior probability, or we can average over all models in
our hypotheses space, with each model contribution to the overall
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conclusion in proportion to its posterior probability. In the first
case, we compute p(x|mj) with mj = arg maxmi p(mi|d). In the
second case, we compute the weighted average

∑
i p(x|mi)p(mi|d).

This takes care of both deductive and inductive reasoning, with
deductive reasoning being only a special case of inductive reason-
ing.

I will now use the probabilistic programming language Church
to formally describe how to connect a language-like representa-
tional medium with Bayesian inference such that we get a model
that takes some data d1, d2, ..., dn as input and learns how the
generating process out there in the world looks like3: 3The learned models can then be

used to reason about the
generating process, but this is not
shown here.; The true observations are fixed:

(define true-observations
(list ...))

; The representational medium is specified
; as an arbitrary stochastic procedure from
; which we can sample expressions for
; generative models:
(define sample-expression

(lambda () ...))

; The main inference loop. Church’s query samples
; conditionally from the random world that is its
; first argument, returns what is given as its
; second argument and conditions on the third
; argument evaluating to true:
(query

; The generative model ’in the head’:
((define hyp-expression (sample-expression))
(define hyp-observations

(repeat
(length true-observations)
(lambda () (eval hyp-expression (get-env))))))

; What we want to know:
hyp-expression
; What must be true for any models
; we want to sample:
(equal? hyp-observations true-observations)
(get-env))

(3.1)

Two questions are left open: First, does this work in practice?

25



Is there a simple model for which we know that this kind of rep-
resentation learning works? This is the question I want to answer
affirmatively in the remainder of this thesis. Second, this looks
computationally expensive, even for a simple example – how can
this work in practice? This is the question on which method to use
to compute the posterior distribution, and I am going to tackle it
in the next chapter.
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Chapter 4

Inference

In the last chapter, we have seen that the problem of finding
models that explain our observations well can be modeled as com-
puting the posterior distribution over all generative models con-
ditioned on them generating the data, i.e. p(m|d). When we
make predictions, we can then weigh the prediction each individ-
ual model makes by how likely each model is under that distribu-
tion. One way to look at the task of sampling from the distribution
over generative models is to see it as composed of the two sub-
problems of model scoring and model space exploration. In these
subproblems, the two questions we ask are: First, if we have any
given model m and data d, how can we compute p(m|d)? Second,
how can we move from model to model such that what we get are
actual samples from the distribution over models? As a precursor
to the two methods described in this chapter, importance sam-
pling and Markov Chain Monte Carlo, I will now look at these
two questions in sequence:

Given observations and a model, how can we score the model? Scoring

More formally, what is the posterior probability of a certain model
m given data d? Bayes’ rule tells us that p(m|d) ∝ p(d|m)p(m),
which means that we can again decompose our problem, namely
into finding p(m), the prior probability of the model, and finding
p(d|m), the likelihood of the data under our model. Since what we
would like to use our score for is to compare different models, it
does not matter that p(d|m)p(m) is only proportional to the true
posterior probability and that we do not know the normalization
constant that would turn this into the true posterior.

How do we explore the space of possible models efficiently? We Exploration
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express our models in a representation language that exhibits pro-
ductivity (through compositionality), therefore there are infinitely
many possible models. Consequently, enumeration is not an op-
tion. If what we want to do is to find the model with the highest
posterior score, we are looking at an optimization problem with
a discrete (but not finite) set of solutions and thus can employ
search and combinatorial optimization techniques. On the other
hand, we might want to reason using the full posterior distribu-
tion over models. For example, in the case where we have two or
more models which are approximately equally likely, we might not
want to completely disregard one of the two models but use both
in our judgements and weigh their influences accordingly. In this
case, what we need to to is to represent the posterior distribution
over models in a way that gives us an efficient method of getting
at those models that make up the bulk of the probability mass.

In the next two sections, I will present an answer to these ques-
tions. I will first describe adaptive importance sampling, an algo-
rithm that — among other uses — can be used to efficiently com-
pute the likelihood of observations given a model, then Markov
Chain Monte Carlo, an algorithm that can be used to sample
from the posterior distribution over models given that a method
is available to compute the likelihood of the observations.

Notation

Sans-serif letters, such as x, y, z, denote one-dimensional random
variables unless stated otherwise. Bold sans-serif letters, such as
x, y, z, denote multi-dimensional random variables1. Letters in1i.e. vectors of random variables

regular, serifed fonts denote instantiations of random variables.
For example, x = x means that xi = xi for all one-dimensional
components xi of the multi-dimensional random variable x. When
we want to say that a random variable x is distributed according
to a distribution p, we write x ∼ p. By px, we then denote the
probability mass function for x if x is discrete, and the probability
density function if x is continuous. By px(x) we denote the prob-
ability mass (or density) of the value x under distribution px. By
〈f(x)〉 we denote the expected value of function f when applied
to random variable x. The set of possible values that xi can take
is denoted by Ωxi and the set of possible values that x can take is
denoted by Ωx =�

n

i=1Ωxi .
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4.1 Importance Sampling

In this section, I describe importance sampling, an inference method
that — among other uses — lets us estimate how likely an ob-
served value is a priori under some generating distribution even
if we cannot sample from this distribution directly.

4.1.1 Introduction

Importance sampling is a technique for solving the following prob-
lem: We are given a target distribution px for which we would like
to compute or estimate the expectation of a function f : Ωx → R
[Mac03, Gog09]. Examples of properties we can estimate this way
are the mean, the variance, and the prior and posterior score of
certain values. Ideally, we would always compute the exact value
φ of the expectation:

φ := 〈f(x)〉 =
∫ +∞

−∞
f(x)px(x)dx (4.1)

If we do not know the analytical expression for px or cannot
compute the exact expectation for other reasons, we can still esti-
mate the expectation from samples x(1),x(2), ...,x(n) if we know
how to sample from the target distribution2: 2This method of estimation is

justified by the laws of large
numbers which state that the
sample average converges to the
expected value.φ̂ =

1
n

n∑
i=1

f(x(n)) (4.2)

However, let us assume that we do not know how to sample
from the target distribution px, but that we do know how to com-
pute the probability of any particular value using px

3. In this 3For almost all interesting inference
problems, we cannot easily
generate samples from the
distribution of interest. Here, the
number of values in Ωx is usually
very high. By definition, correct
samples will mostly consist of
x ∈ Ωx for which px(x) is high –
but how can we know where px(x)

is high without looking at all
values (which might be
intractable)? [Mac03]

situation, we can use importance sampling to estimate the expec-
tation.

The main idea behind importance sampling is to use a proposal
distribution qy instead of the target distribution px to generate
samples and then, since some values will occur more often than
they would if we could sample from px, and some less often, to
reweight each sample when estimating the statistic. Therefore, we
would like to choose a proposal distribution that is as close to px

as possible. However, the only true constraint that we must not
violate in order for importance sampling to give valid estimates is
that qy is a valid importance distribution for px:
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Definition 4.1 qy is a valid importance distribution for px if we
can sample4 from qy, if for all y ∈ Ωy, we can compute qy(y) and4One way to formalize the notion

“easy to sample from” is to say
that the distribution can be
expressed in a product form and,
in this form, can be specified in
polynomial space (depending on
the number of random variables).
[Gog09]

if for all x ∈ Ωx, if px(x) > 0, then qy(x) > 0.

We will now derive how to estimate the expectation 〈f(x)〉
from samples drawn from qy, first for normalized densities, then
for the more general case of unnormalized densities. Given a value
y drawn from qy, we define its importance weight as follows:

w(y) :=
px(y)
qy(y)

(4.3)

Using this definition, we rewrite the expression for the expec-
tation 〈f(x)〉:

φ =
∫ +∞

−∞
w(y)f(y)qy(y)dy (4.4)

We can now estimate the expectation φ by using samples
y(1),y(2), ...,y(n) from the proposal distribution qy adjusted by
their importance weights5:5This is justified by the fact that

formula 4.4 denotes an expectation
and by the laws of large numbers,
as before.

φ̂ =
1
n

n∑
i=1

w(y(i))f(y(i)) (4.5)

What if we know px and qy only up to a multiplicative con-
stant6? It turns out that we can adjust our estimator for this case6For Bayesian inference, this is a

common situation since the
computationally most difficult
part is to compute the normalizing
sum in the denominator:

p(h|d) =
p(d|h)p(h)P
i p(d|hi)p(hi)

[Ber]. By p∗x , q∗y , and w∗, we denote the unnormalized versions of
px, qy, and w. zp and zy denote the normalization constants. We
start out by rewriting our estimator 4.5 using this terminology:

φ̂ =
1
n

n∑
i=1

px(y(i))
qy(y(i))

f(y(i)) (4.6)

=
1
n

n∑
i=1

p∗x(y(i))
q∗y (y(i))

zq

zp
f(y(i)) (4.7)

=
1
n

∑n
i=1

p∗x (y(i))

q∗y (y(i))
f(y(i))

zp�zq
(4.8)

All that is left to do is to show that we can estimate the de-
nominator from samples drawn from qy:
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zp

zq
=

∫ +∞
−∞ p∗x(x)dx

zq
(4.9)

=
∫ +∞

−∞

p∗x(x)
q∗y (x)

q∗y (x)
zq

dx (4.10)

=
∫ +∞

−∞
w∗(x)qy(x)dx (4.11)

≈
n∑

i=1

w∗(y(i)) (4.12)

We can now estimate expectations using importance sampling
even without normalized densities:

φ̂ =
∑n

i=1 w
∗(y(i))f(y(i))∑n

i=1 w
∗(y(i))

(4.13)

In summary: If we have some valid importance distribution
and if we can compute the unnormalized score of the samples
under the posterior, then we can use importance sampling to es-
timate arbitrary expectations for the posterior distribution.
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4.1.2 Probabilistic Programs

We will now describe how to apply importance sampling to prob-
abilistic programs7. We first state what we want to accomplish7This section require some

understanding of how the Church
evaluator works. For background
on metacircular evaluation in
Scheme, see [ASS]; for Church, see
[GMR+08].

illustrated by an example, then describe a simple algorithm that
accomplishes it, followed by an algorithm that accomplishes the
same goal much more efficiently.

We presented importance sampling as a means to estimate a
expectation f : Ωx → R for a target distribution px. Now, let
our target distribution be the conditional distribution defined by
the following program constrained to the return value (pair true
*)8:8By *, we denote the wildcard, i.e.

an unconstrained return value.
((lambda (x y) (pair (and x y) x))
(flip 0.01)
(flip 0.01))

(4.14)

If we repeatedly run this program without constraint, the most
sequence of samples we get is likely to start with (pair false
false) (pair false false) (pair false false). The number
of samples that fulfill the constraint (pair true *) is likely to
be very small. As a consequence, if we want to efficiently sample
from this distribution, running the program forward and rejecting
all samples that are no good is very inefficient.

Let us assume that we are not interested in the samples them-
selves, but that we want to compute some expectation for this
target distribution. In other words, we want to compute a func-
tion of the sampled values from this program but we are interested
only in those values where the first value of the returned pair is
equal to true. As was the case in the importance sampling setup
described above, it is not clear how to sample from the target
distribution I just described. However, if we could sample from a
different distribution and reweight each sample according to the
ratio of true score and actual score, then we could estimate ex-
pectation such that the result is as if we could sample from the
true distribution.

A starting point for this idea is to take samples from the un-
constrained program and then reweighting the samples according
to the ratio of constrained program score to unconstrained score.
This approach — sampling from the prior and reweighting ac-
cordingly — is called likelihood weighting. In order to reweight
the samples, we need to know the probabilities of return values
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under the (constrained) target distribution up to a multiplica-
tive constant. Since all samples that do not fulfill the constraint
have probability 0 and since we do not need to renormalize, we
can directly use the probabilities we get from evaluating the un-
constrained program, which means that all weights end up being
either 0 or 1 and that all we do in this case is to reject samples
that do not fulfill the constraint. This has the same problems
naïve rejection sampling has, namely that we cannot use many of
the samples we take and thus waste computation time. In our ex-
ample, we discard all samples where not both of the two (flip)s
happen to return true. For programs where most of the values
sampled from the prior distribution have probability 0 in the pos-
terior distribution, we need better proposal distributions than the
prior.

In order to devise a better proposal distribution, let us go back
to program 4.14 and go through the sequence of evaluation steps
that would need to happen if we wanted to sample from the target
distribution where all values fulfill the constraint (pair true *):

1. The first step in the evaluation is the application of the oper-
ator with expression (lambda (x y) (pair (and x y) x))
to the two operands with expressions (flip) and (flip).
Like Scheme, Church9 is an applicative-order language. This 9More precisely: MIT-Church

without importance-eval is
applicative-order.

means that at procedure applications, the operands are eval-
uated before the operator is applied. Before we have started
to apply the operator to the operands, we do not know how
to constrain the operands such that we get the return value
(pair true *) out of the application. Therefore, we need
to delay the evaluation of the operands until they are re-
quired.

2. Next in sequence, we evaluate the procedure body of (lambda
(x y) <body>) with x bound to the delayed value for the
first (flip), y bound to the delayed value for the second
(flip), and the constraint (pair true *) on the whole
expression. This means that we evaluate (pair x (and x
y)), an application of the primitive procedure pair. What
we need to do in order to sample from the distribution where
all values match the pattern (pair true *) is to invert the
primitive procedure pair to find out which operand values
result in the return value that matches this pattern. Such
an inversion would tell us that the first operand can be any
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value and that the second operand must be true. With
knowledge about how the operands must look like, we can
go on evaluating the operands.

3. We evaluate the first operand of (pair (and x y) x), the
expression (and x y), with constraint true, notice that it
is a primitive procedure application and therefore we need
to invert the procedure. Since the only operand values for
which and can return true are true for both operands, we
know what to do: We need to evaluate both operands with
constraint true. Both operands are variable lookups, and
for both operands the value has been delayed. We force
both operands with the constraint true, and in doing so
apply the elementary random procedure (flip) with con-
straint true twice. If we want to sample from the target
distribution for the overall expression, we know that the two
applications both need to return true, therefore we set the
elementary random procedures to true. Having evaluated
both operands, we now apply the primitive procedure and
which results in the desired value true.

4. We evaluate the second operand of (pair (and x y) x),
the expression x, notice that it is a variable lookup which
has already been forced and therefore look up and return its
value true.

5. Having evaluated both operands for (pair (and x y) x),
we apply pair to the returned values true and true which
results in the overall result (pair true true) — a value
that matches our constraint (pair true *)!

We will now review the three ways in which we had to mod-
ify the evaluation of the program in order to get a sample that
fulfills the constraint, i.e. a sample that does not have proba-
bility 0 under the posterior distribution. In particular, we will
show how these modifications fulfill the criteria we have posed
for a valid importance sampler in the last section: That we can
always compute the probability of a return value under the pro-
posal distribution and that, if the probability under the posterior
distribution is greater than 0, the probability under the proposal
distribution is greater than 0, too.
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Setting of elementary random procedures
If we encounter an elementary random procedure application like
(flip) and know that our target distribution has a certain return
value for this application, e.g. true, we set the application to
the desired value. We know both the posterior score10 and the 10Given an arbitrary value, an

elementary random procedure can
return its likelihood.

proposal score, whereby the latter is 1 if we can successfully set
the value. If we cannot set the value because the elementary
random procedure assigns probability 0 to it (and therefore need
to assign a proposal score of 0), we know that this is also the case
under the posterior distribution. Since only these two cases are
possible, both criteria are fulfilled.

Inversion of primitive procedures
At applications of primitive procedures like pair and and where
we have a constraint on the return value, we invert the procedure
to find out which operand values can result in the desired return
value. For each primitive procedure, we therefore store an inverse
procedure that, given a return value, returns a list of n possible
operands. We uniformly draw one operand choice and go on with
the operand constraints being equal to the chosen operand val-
ues11. This adds a factor of 1

n to the proposal score for this sam- 11Whereas one solution is to
randomly choose one of these
inverses and then constrain the
operands to have the desired
values, this will result in a
proposal distribution that is not as
close to the prior distribution as
we might wish. We can use
sequential inverses as a remedy:
We first choose a sequence on the
operands, then evaluate in
sequence all operands as long as
there are inverses that can match
any operand choice. When this is
no longer the case, we pick an
inverse at random that matches
our initial operands and force the
remaining operands to the desired
inverse values.

ple. Since we know that our inverses contain all possible operand
values that could lead to a certain return value, we know that we
are not excluding any value that has a probability greater than 0
under the posterior.

Delayed evaluation
Instead of evaluating operands before applying compound proce-
dures, we delay the evaluation until the value is actually needed.
Delaying the evaluation allows us to push constraints further down
the evaluation than would be possible otherwise, where we would
have to evaluate the operands of compound procedures without
constraints which could result in many samples with probability
0 under the posterior distribution.

What connects these three ideas is that we push the available
evidence — the constraint — down the evaluation branches in
order to sample from a distribution that is close to the posterior
and in particular does not return samples that have probability 0
under the posterior, since these samples are useless for estimating
the expectation we care about. In the next section, we will see how
we can do even better by adapting the proposal distribution step
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by step such that even in those cases where pushing the evidence
was not sufficient to avoid a sample with probability 0 under the
posterior, we can learn to avoid making the same mistake in future
samples.
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4.2 Adaptive Importance Sampling

In this section, I describe a version of importance sampling that
improves over time. By learning from the samples it takes some-
thing about the distribution it is sampling from, this method can
incrementally achieve lower rates of rejected and low-probability
samples and thus it can result in more accurate estimates.

4.2.1 Introduction

Adaptive importance sampling denotes a version of importance
sampling where we do not take all our samples from the same
proposal distribution qy, but instead sample from a sequence of
distributions q(1)y , q(2)y , . . . , q(n)

y . This is of particular interest if
each sample gives us information about how the posterior distribu-
tion looks like, such that we can improve our proposal distribution
q
(i)
y in the following step.

According to [RC04], it is possible to keep the original im-
portance weights in this setup and still produce an estimate that
converges to the true estimate. This means that our estimator is
still

φ̂ =
∑n

i=1 w(y(i))f(y(i))∑n
i=1 w(y(i))

(4.15)

with the weights being defined as follows:

w(y) :=
px(y)

q
(i)
y (y)

(4.16)

Here, q(i)y refers to the proposal distribution that was used to
generate sample y.

However, there is reason to look into modified estimators in
order to arrive at more stable estimates [CMMR09]. In particu-
lar, if the (unnormalized) weights from one proposal distribution
are very large, they will dominate the other samples in the final
approximation, no matter how efficient the other proposal distri-
butions are.

37



4.2.2 Probabilistic Programs

I will now describe how to apply adaptive importance sampling
to probabilistic programs. We have seen that the goal of adap-
tation is to change the distribution we are sampling from such
that we get samples that are distributed more like those from
the posterior and less like those from the initial, possibly ineffi-
cient importance distribution. We also know that we must always
maintain a valid importance distribution to keep the guarantee
that our estimated expectations approximate the true value. In
the following, I present a framework for adaptive importance sam-
pling with probabilistic programs that can accommodate different
adaptation policies and, at the same time, makes it easy to ensure
that we maintain a valid importance distribution.

I will proceed as follows: First, I define what I mean by a valid
adaptation policy and shortly review the programming language
constructs that will play a central role in our adaptation policies
for probabilistic programs. I then formally characterize the class
of adaptation policies that are possible within this framework. I
define the concept of an importance table and, using this concept,
characterize a class of valid adaptation policies for probabilistic
programs and prove that any policy within this class maintains a
valid importance distribution.

Definition 4.2 π is a valid adaptation policy if, given a valid im-
portance distribution q

(t)
y for the target distribution px and some

information i, π(q(t)y , i) returns a new valid importance distribu-
tion q(t+1)

y .

We will see that, in our framework, adaptation always hap-
pens when functions are applied. Therefore, the two language
constructs that are at the center of adaptation are both func-
tions: primitive procedures and elementary random procedures.
We have seen both constructs in our introduction to Church.
Primitive procedures are deterministic functions like and, or, and
pair. For many primitive procedures, inverses exist. This means
that a primitive procedure p is associated with another primitive
procedure inv-p that, given a desired return value, returns the list
of operand assignments that would result in this return value if p
was applied to any of the assignments. Elementary random pro-
cedures are stochastic functions like flip, sample-integer and
gaussian; they do not have inverses, but they do have a scoring
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function that returns the probability of a return value given an
environment and operand settings.

I will now characterize the class of adaptation policies that are
part of the framework I am about to describe. As first introduced
in the section on importance sampling for probabilistic programs,
we are still in a setup where we try to push information about the
target value of the evaluation as far down the evaluation tree as
possible. This means that at each evaluation, we have information
on what the target value of this evaluation should be, be it a fixed
value or the wildcard setting that does not constrain the return
value.

One way of looking at any adaptation policy is to see it as
separated into information collection (what information on how
the posterior looks like is stored during the evaluation process),
information propagation (what additional information is deduced
from what is collected), and information usage (how the stored
information is used to change the importance distribution). I will
first introduce the data structure that is used to store information,
the importance table, then describe when and how information is
stored, propagated, and used.

The importance table is a hash table that uses (expr, r-env)
pairs as keys and association lists12 ((v1, w1), (v2, w2), ..., (vn, wn)) 12An association list is a list of

pairs. The first element of the pair
is called the key, the rest of the
pair is called the datum.

as values. In the introduction to Church, we have seen that an ex-
pression together with an environment defines a distribution over
return values. This distribution does not depend on the complete
environment, but only on part of it (i.e. those variables within
the environment that are actually used in the expression). These
distributions are what we will store information on; in particular,
we will store information on what values these distribution can re-
turn and how probable the values are. This is why the hash table
keys each consist of an expression and an relevant environment,
and this is why the hash table values are association lists of return
values associated with weights13. 13There are adaptation policies for

which it is useful to store more
than a single real number. For
example, one might want to store a
list of importance weights for each
(expr, r-env, val) triple. I limit
my analysis to those that store a
single real-numbered weight

By ωexpr,env(v), I denote the function that looks up the im-
portance table entry for the pair (expr, r-env) and returns the
weight that is associated with the value v in the association list
for this pair. If no entry is found in the importance table for this
(expr, r-env, val) triple, then ω returns a default score d as
defined by the active adaptation policy14.

14We might want to use adaptation
policies that specify more about
the weight lookup function than
just the default value. For
example, for continuous values it
could be useful to take into account
close neighbors of the value that is
looked up. I will not talk about
these kinds of extensions here.

In our framework, information collection happens at the eval-
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uation of erp applications, whereas information propagation and
usage happen when primitive procedures are applied. In the fol-
lowing, I will first explain these three policy elements, then de-
scribe more formally what our class of adaptation policies looks
like:

Collecting Information
After the application of an elementary random procedure with
target value v (which may be a wildcard), we have new informa-
tion: We now have another pair of (unnormalized) posterior score
and (unnormalized) importance score for this return value in the
context of a particular expression and environment. At this point,
we use a function f that is supplied by the policy to compute the
new weight of this target value for the (expr, env) pair that we
just evaluated:

w = f(p, q) (4.17)

= f((p1, ..., pn), (q1, ..., qn)) (4.18)

Here, pn is the score of the return value under the target distribu-
tion and qn is the score of the return value under the importance
distribution. Since adaptation policies might take into account
earlier evaluations of (expr, env) that resulted in v, we not only
allow the function that computes the weight to depend on the
latest scores, but on all previous scores. The weight w that is
returned by f must be a real number between 0 and 1. We then
add (v, w) to the association list that is stored in the importance
table for the current (expr, r-env) pair.

Propagating Information
At the application of a primitive procedure with a fixed tar-
get value v, we propagate information from the operand expres-
sions to the overall expression. We first get a list of all inverses
(inv1, ..., invn) that lead to this target value, with each inverse
invi consisting of a list of operand values (op1, ..., opm). Using
these values and the importance table, we compute the overall
weight of the (expr, env) pair that we are currently evaluating
as follows:
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w =
n∑

i=1

m∏
j=1

ωexprj ,env(invi,j) (4.19)

We then add (v, w) to the association list that is stored in the
importance table for the current (expr, r-env) pair.

This propagation policy assumes that the operand values are in-
dependent, i.e. that evaluating one operand does not affect the
evaluation of other operands. When we use delayed evaluation,
this is no longer true. For example, when we evaluate ((lambda
(x) (pair x x)) (flip)) constrained to the return value (pair
true false) with the operand (flip) delayed, this policy cannot
learn that the pair application cannot return (pair true false).

This is not a problem for the current project for two reasons.
First, it does not result in an invalid propagation mechanism,
only in a less efficient one. When we choose the wrong inverse, the
resulting sample gets rejected and does not factor into expectation
computations. Second, when we later apply our methods to learn
programs, we limit ourselves to simple programs without lambdas
(since the required methods to switch between programs without
lambdas and those with lambdas are not implemented yet; I will
explain this in more detail later on).

Using Information
Our goal is to sample each inverse with a probability proportional
to its total posterior score, i.e. we want to use each operand
assignment as frequently as it would be used under the poste-
rior distribution. Therefore, it is at the application of primitive
procedures with a fixed target value v that we allow our adapta-
tion policies to use stored information. We look up all inverses
(inv1, ..., invn) and thus know the operand settings (op1, ..., opm)
for each inverse. We use this to compute a weight wi for each
inverse:

wi =
m∏

j=1

ωexprj ,env(invi,j) (4.20)

We then sample the inverse that we are going to use from the
distribution over inverses where each inverse has a probability
proportional to its weight. Thus, an adaptation policy can change
the relative frequency of different inverses and, ideally, change it
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in a way that makes the inverse usage close to that under the
posterior distribution.

We can now say more precisely what an adaptation policy
consists of:

Definition 4.3 Within our framework, an adaptation policy π

is a tuple (f, d), where f is a function (P ,Q) → [0, 1] and d

is a default weight that is used when no weight is stored in the
importance table for an (expr, r-env, v) triple. Both p ∈ P

and q ∈ Q are unnormalized probabilities.

What remains to be shown is under which conditions such
a policy is valid, i.e. under which conditions the policy creates a
new valid importance distribution if applied to a valid importance
distribution.

Theorem 4.1 π is a valid adaptation policy if π is a policy (f, d)
with the property that f(p, q) > 0 if any pi > 0, and that d > 0.

Before we can prove that this statement is true, we need to re-
view the concept of a generative history and to introduce concept
of a valid importance table.

In our introduction to Church, we have seen that a generative
history for a (expr, env) pair is a sequence of recursive calls
to eval, and their return values, and that a (expr, env) pair
thus defines a distribution over generative histories. This gives
us another way to think of inverses: When we invert a primitive
procedure to get all the operand settings that can result in a return
value v, we effectively partition the space of generative histories for
the expression that contains the primitive procedure application
by the different ways to get the desired value v.1515In our analysis, we assume that

inverses are complete, i.e. contain
at least all operand settings that
can lead to a return value v. Definition 4.4 A valid importance table is an importance table

where (v, 0) is stored in the association list for (expr, r-env)
only if no generative history we get from evaluating expr in r-env
results in value v.
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Proof Structure

Let µ be an adaptation policy with f(p, q) > 0 whenever any pi >

0, and d > 0. The proof that shows that µ is a valid adaptation
policy will proceed as follows:

1. If we have a valid importance table t and a valid proposal
distribution q, then µ constructs a new valid proposal dis-
tribution q+ using the information in the importance table.

2. The importance table ti+1 that µ constructs from a valid im-
portance table t by information collection and propagation
is a valid importance table.

∴∴∴ If we start out with a valid importance table ti and a valid
proposal distribution qi, µ constructs a new valid proposal
distribution qi+1 via importance table ti+1. Therefore, µ is
a valid adaptation policy.

Note that the empty importance table is a valid importance
table, that we can therefore always start with a valid importance
table and that we need not make the availability of such a ta-
ble part of the requirements of a valid adaptation policy as de-
scribed in theorem 4.1. Similarly, note that — as seen in likelihood
weighting — that the prior distribution for a program is a valid
importance distribution.
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Proof, Part 1: Constructing Valid Proposal Distributions

Assume that we have a valid proposal distribution q for a certain

Importance
Table

Prior
Distribution

Proposal
Distribution

t 1
q q1

t 2
q q2

t 3
q q3

program, i.e. a distribution over generative histories where each
history that is possible under the posterior distribution p is also
possible under q. Further assume that we have a valid importance
table t.

We will now show that the adaptation policy µ uses the im-
portance table t to construct an adapted proposal distribution q+

that is valid :

1. If an (expr, env) pair is in the importance table t with a
value v and a weight 0, then no generative history we get
from evaluating expr in env results in value v.

2. If there is no generative history for a (expr, env) pair that
returns v, then there is no generative history in the posterior
distribution over histories that includes a subhistory where
(expr, env) evaluates to v.

3. If h is a generative history that is impossible under the pos-
terior, and if q+ is equal to valid q except for the fact that
h is excluded from the set of possible generative histories,
then q+ is a valid proposal distribution.

∴∴∴ If we have a valid importance table t and a valid proposal
distribution q, then µ constructs a new valid proposal dis-
tribution q+.

Statement 1 is true by the definition of “valid importance ta-
ble”, statement 2 follows from subset reasoning and statement 3
follows from the definition of “valid proposal distribution”.
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Proof, Part 2: Constructing Valid Importance Tables

Assume that we have a valid importance table ti. We will now

Importance
Table

Prior
Distribution

Proposal
Distribution

t 1
q q1

t 2
q q2

t 3
q q3

show that the adaptation policy µ uses the information it collects
and propagates to construct an importance table ti+1 that is again
valid.

1. The importance table ti+1 is equal to ti except for updates
two adaptation rules.

2. Rule 1: Information collection at elementary random proce-
dures:

i As a consequence of the rules for the weight compu-
tation function f , we only update ti+1 with (expr,
env), value v, weight 0 if an erp application returns
the score 0 for v.

ii If the erp application returns the score 0 for v in the
current environment, we know that there is no gener-
ative history for (expr, env) that results in v (since
this is what a score of 0 means).

∴∴∴ Adaptation at elementary random procedures preserves
importance table validity.

3. Rule 2: Information propagation at primitive procedures:

i As a consequence of the sum-product propagation rule,
we only update ti+1 with (expr, env), value v, weight
0 if ti tells us that each possible combinations of operand
values that could lead to v (as determined by the ap-
propriate inverse procedure) has weight 0 in the current
environment. If this is the case, then, since ti is valid,
no combination of operand settings has a generative
history under the posterior.

ii If all operand assignments that could lead to the return
value v are impossible under the posterior distribution,
then we know that the return value itself is impossi-
ble under the posterior distribution for (expr, env),
i.e. no generative history for (expr, env) exists that
results in v.

∴∴∴ Adaptation at primitive procedures preserves impor-
tance table validity.

∴∴∴ The importance table ti+1 is valid.
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4.2.3 A Constraint Propagation Policy

Having established a class of valid adaptation policies, it is now
easy to describe the constraint propagation policy that we will use
to efficiently score observations from tree-generating programs. I
start by introducing some terminology, then describe the actual
policy.

If a value v is never returned by the distribution induced by
a given (expr, r-env) and we are evaluating this pair with con-
straint v, then we call this situation a dead-end. We call the
recorded fact that this (expr, r-env) pair cannot return this
value a nogood (both based on terminology used in the SAT16-
community). Using this terminology, the goal of our constraint16SAT: The Boolean satisfiability

problem propagation policy is to store knowledge about the return val-
ues of (expr, r-env) pairs and to use this knowledge to avoid
dead-ends.

This is a formal description of such a policy:

f(p, q) =

1 if any pi > 0

0 otherwise
(4.21)

d = 1 (4.22)

Since this policy fulfills the requirements that that f(p, q) > 0
if any pi > 0, and that d > 0, it is a valid policy.

In the last sections, we have derived a class of importance
sampling algorithms for probabilistic programs that can be used
to efficiently compute expectations. In particular, we have spec-
ified one algorithm in this class, a constraint propagation algo-
rithm, that propagates information about which values cannot
be returned by elementary random procedures up at applications
and thus avoids ahead of time the choosing inverses that contain
these values. Using this algorithm, we will be able to compute
the likelihood of observations under tree-generating programs by
quickly excluding all those configurations of the program from our
considerations that could not have given rise to the observations.
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4.3 Markov Chain Monte Carlo

Before I introduce the practical setup we use to demonstrate struc-
ture learning, I will shortly describe the second class of inference
methods we will employ, Markov Chain Monte Carlo (MCMC),
and how they are used in Church for conditional sampling.

4.3.1 Introduction

In contrast to importance sampling methods, we are now not only
interested in computing the expectation of some function applied
to samples from a complex probability distribution, but we want
to (approximately) sample from the distribution17. I will first 17Typically, it is very difficult to

sample from the distribution
directly because the state space is
large and we do not know which
parts of the state space contain
high-probability values. MCMC
methods are used to overcome this
difficulty.

introduce some background concepts, then explain the idea behind
MCMC.

A Monte Carlo algorithm is an algorithm that arrives at its
result by repeatedly sampling from a probability distribution.

A Markov chain is a sequence of random variables where each
variable is independent of all of its predecessors given its immedi-
ate predecessor. Under certain conditions18, this chain converges 18Convergence of a Markov chain

with transition kernel K to the
distribution p requires two things:
First, p is an invariant (or
stationary) distribution for K, i.e.
p = pK. Second, K must be
ergodic. A kernel is ergodic if it is
irreducible (any state can be
reached from any other state) and
aperiodic (the stochastic walk does
not get stuck in cycles). [Bon]

to a stationary distribution as its length increases, i.e. the prob-
ability that a variable in the chain takes on a certain value con-
verges to a fixed quantity [GY06]. Hereby, it does not matter from
which state we start, given that we wait long enough for the chain
to converge.

The main idea behind MCMCmethods is to construct a Markov
chain that has as its stationary (or long-run) distribution the dis-
tribution we want to sample from and that is cheap to compute.
Then, by recording the sequence of states we visit when simulat-
ing the Markov Chain, we accumulate (correlated) samples from
the target distribution. If we want to sample according to the
probability under the distribution of interest, this stochastic walk
through state space must be such that we spend most of the time
producing samples from high-probability regions.

4.3.2 The Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm is the most popular
method to construct a Markov Chain that has the properties
required to converge to the target distribution, and most other
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MCMC algorithms can be seen as special cases or extensions of
this method [AdFD03].

The main ingredient for MH is a proposal distribution that
specifies how to sample a candidate next state given the current
state of the Markov chain. Starting from this proposal distribu-
tion, MH constructs an acceptance function. Together, proposal
distribution and acceptance function specify a Markov chain that
has the desired target distribution as its stationary distribution.

Just as was the case for importance sampling, the choice of
the proposal distribution is crucial: If the probability is very low
that we propose a sequence of steps that lead to a region that has
high probability under our target distribution, then it can take
a long time until the chain converges and, consequently, until we
get samples that accurately represent the target distribution.

The acceptance function gives the probability of accepting this
candidate as the actual next state. If the candidate is rejected, the
current state becomes the next state. If the target distribution is
p and the proposal distribution q, then the acceptance probability
of going from current state s to candidate state s∗ is given by
A(s, s∗) = min{1, p(s∗)q(s|s∗)

p(s)q(s∗|s) }. The normalization constant for
p and q cancels, therefore all we need to know about the target
distribution is some quantity proportional to the probability of a
value under this distribution for all values.

4.3.3 MCMC and MH in Church

We have already seen that the probabilistic programming lan-
guage Church contains a language construct for sampling from
conditional distributions, query. In the MIT-Church implemen-
tation, mh-query samples conditionally by using the Metropolis-
Hastings algorithm. In light of the fact that this is currently the
only universal inference algorithm that works reasonably well for
program learning19, I will now give an overview on how the uni-19The question whether adaptive

importance/rejection sampling on
its own is an useful method for
program learning is still open.

versal mh-query works.

Before we start, I will give a simple example that illustrates
how mh-query is used in Church. Assume I have flipped an un-
fair coin ten times and saved the resulting sequence of heads
(encoded by true) and tails (encoded by false) into a variable
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true-coin-flips:

(define true-coin-flips
(list false false true true false

false false true false false))
(4.23)

Now I would like to infer how biased the coin was – the weight
of the coin – but without thinking about a special-purpose way to
do inference. What I would like to do is to let Church construct
a Markov chain such that visiting the states of this chain is (in
the limit) equivalent to sampling from a distribution over weights
conditioned on coin flipping returning the results as specified in
true-coin-flips. Here is how to write this down in Church:

(repeated-mh-query 10
; Random world:
’((define hyp-coin-weight (uniform 0 1))

(define hyp-coin-flips
(repeat 10 (lambda () (flip hyp-coin-weight)))))

; What we want to know:
’hyp-coin-weight
; Condition:
’(equal? hyp-coin-flips true-coin-flips)
(get-env))

(4.24)

Using (repeated-mh-query 10 ...), we first instruct Church
to take ten samples from the conditional distribution we are about
to describe. Then we write down a generative model for our obser-
vations, the results of the coin flipping. The query part contains
the one variable of the generative model that we are actually inter-
ested in, i.e. that we would like to sample: the hypothetical coin
weight that is inferred by conditioning the observations generated
by the generative model to equal the true observations. Running
this results in an output that looks like this:

(0.106 0.335 0.174 0.443 0.381
0.584 0.416 0.312 0.467 0.529)

(4.25)

What we got are ten approximate samples of the coin weight
in the generative model conditioned on our generative model re-
sulting in the actual observations.

Having seen how mh-query can be used to conditionally sam-
ple from generative models, I will now relate this to the previ-
ous sections by explaining how the Markov chain looks like that
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Church constructs in order to compute samples. In order to do
so, I will answer three questions (following [GMR+08], [Man09]):
First, what is the state space of the Markov chain? Second, what
is the initial state? And third, what is the proposal distribution?

Intuitively, one could imagine that the state space is exactly
the space of possible return values, since at each step of the
Metropolis-Hastings algorithm, we want to sample one value. For
example, for the query above that returns coin weights, this would
be the interval [0, 1] of real numbers. In fact, the state space of
the Markov chain that mh-query constructs is the space of com-
putation traces of the Church program defined by the query, i.e.
not only the space of return values, but the space of return values
augmented by information on how the return values were con-
structed20. Each state contains the dependency structure of the20More formally, the computation

trace is a directed acyclic graph
composed of two directed trees,
one tree for the environment
structure of the program, and one
tree for the evaluation structure,
where an evaluation node points to
a subnode for each recursive call
to eval.

computation and, in particular, contains information on how the
return value depends on the stochastic choices that were made
during the evaluation.

We get the initial state, i.e. the initial trace, by executing the
query expression and recording the recursive calls to eval and the
environment structure along the way21.

21Depending on the program, we
may have to force it into a state
where the predicate is true, and
depending on the program, this
may be difficult without a method
similar to the constraint
propagation policy of our adaptive
importance sampler.

Knowing what the state space is (the space of all computation
traces that lead to return values for which the condition predicate
is true) and what our initial state is (a single trace that we get by
evaluating the query program), all that is left to specify to make
this a complete Markov chain is how we get from state to state,
i.e. how we propose new candidate states.

In order to create a new trace, we first randomly select22 a
22How well MCMC performs
depends strongly on how good the
proposed states are, i.e. how
quickly they explore the
high-probability regions of the
state space. Using adaptation to
construct better MCMC proposals
is an issue that deserves future
research.

place in the current trace where a random choice was made and
then re-evaluate the choice. In order to keep the trace consistent,
i.e. a valid evaluation history, we then propagate the changes in
the values of subexpressions and bound symbols along the trace.
The Metropolis-Hastings rule then tells us whether to accept the
candidate trace or whether to reject and keep the old trace; if the
condition predicate is false, we always reject.

Taken together, universal conditional sampling in Church is
implemented using a stochastic walk over computation traces that
has the distribution of interest as its long-run distribution.

Now that we have seen two inference methods that can be used
to score generative models given some observations and to explore
the space of generative models, we can describe the circumstances
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under which we will apply these methods to show how learning
generative models with language-like representations can work.
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Chapter 5

Setup

The general setup for our demonstration of inductive learning will
be as follows: A structured world generates observations and the
task of the learner is to construct a generative model of the world
that closely mimics the actual world and that therefore can be
used in reasoning about the world. I have described both the
general idea and and a specific algorithm for learning such models
in previous chapters; now I want to demonstrate how this turns
out in practice. This requires that we determine what the world
should look like to make the demonstration meaningful and what
the representation language should be.

5.1 A Structured World

I start by describing the four desiderata for a world in which a
suitable demonstration of the kind of representation learning I
have described so far can take place.

First and foremost, the world must contain interesting struc-
ture. What I want to demonstrate is the incremental learning of
structured representations. If the world itself does not contain
interesting structure, accurate representations of the world will
not contain structure either. What makes structure interesting?
More precisely: What makes us say that a program that generates
observations contains interesting structure? Most fundamentally,
the program must be shorter than the variety of observations it
generates: There must be some way in which it compresses the
data it generates, some way in which it abstracts from the data. At
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the same time, the generating program itself must contain at least
some information: If the generating program can be expressed too
concisely, e.g. as is the case for observations that consist of a long
sequence of only 0s, we would not call it interestingly structured
either.

Second, the observations must be such that it is possible to
recover the underlying structure to an interesting extent. This
entails two requirements, one based on in-principle considerations,
one based on considerations of computational efficiency. Since the
efficiency requirement is better seen as a constraint on the learner
and its representation language and inductive bias, we are going
to use than on the actual world, I will deal with it in the next
section. However, what is relevant here is that the observation
must contain sufficient information to probabilistically identify
the correct hypothesis (or some small set of likely hypotheses)
in principle. If an observation contains only one bit, it can, on
average, eliminate at most half the probability mass.

Third, the process that generates observations from hidden
structure must be stochastic. If the process were deterministic,
the same hidden structure would always result in the same obser-
vations, we would make one observation and then search through
our representational medium, looking for the shortest program
that results in the observed value. On the other hand, if the
process is stochastic, then making additional observations can re-
sult in additional information about the structure of the gener-
ative process. For example, it can help us to probabilistically
distinguish the generative process (lambda (a a) (flip)) from
(lambda () (flip) (flip)). This tells us something else: The
stochasticity of the process must not be limited to noise that is
added after the observations have been generated, not just noise
at the bottom, but stochasticity that is added within the generative
process. Otherwise, we cannot gain additional information about
the internal structure of the generative process from additional
observations.

Fourth, the world must be simple. We are going to use the
probabilistic programming language Church, therefore simple is
defined relative to this language: The longer the shortest complete
description we can give for a world, the more complex it is. Our
goal is to have worlds that are simple by this measure and that
nonetheless satisfy the criteria given above.
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Since Church is based on Scheme, its fundamental data struc-
ture are lists1. One natural choice both for the internal structure 1Pairs, actually. Lists are built out

of pairs.of the generative processes that define our world and for the ob-
servations is to make them lists of lists – trees, in other words.
If the world consists of tree-generating programs with stochas-
tic choices and abstraction, and the observations consist of the
trees generated by these programs, then all of the requirements
we named above are satisfied. In particular, this choice has the
desirable property that the structure of the observations mirrors
the structure of the generative process to some extent, thereby
providing information that helps to infer from observations what
the underlying process looks like.

Formally, the syntax for tree-generating programs looks like
this:

tree ::= branch
branch ::= ’((lambda (’ var ’) ’ branch ’) ’ branch ’))’ |

’(if (flip) ’ branch branch ’)’ |
’(list ’ label branch* ’)’ |
var

var ::= symbol
label ::= ’(sample-label)’ | ’(quote ’ symbol ’)’
symbol ::= [’A’-’Z’ ’a’-’z’].*

(5.1)

This defines which kinds of worlds we are going to consider.
Intuitively, each world is a program drawn from this grammar. If
we put weights on the productions, we can actually draw worlds
and what we have defined here is a distribution on worlds.

5.2 A Probabilistic Representation Lan-
guage

What does a representation language look like that can efficiently
represent worlds like the one described above? And what should
the prior distribution on worlds look like that the learner in our
demonstration will use?

Clearly, the ideal representation language can represent ex-
actly all possible worlds and no impossible worlds; it is equal to
the language defined by the grammar for tree-generating programs
that we specified in the last section. Equally clearly, the best prior
distribution over worlds assigns exactly as much probability mass
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to each world as is the case for the true distribution from which
worlds are drawn. What I would like to show is how reasoning and
learning can take place given that we have a accurate language to
formally write down models of the world and given that we have a
reasonable prior distribution over what the world is like (e.g. that
simpler worlds are more likely). Therefore, I will use the ideal
representation language and prior for our learner.

In the last section, I mentioned that the observations must
not only allow us to approximately recover the true underlying
structure from an information-theoretic point of view, but they
must allow us to do so in a computationally efficient way. This
means that in order to find the best hypothesis, it must not be
necessary to look at all hypotheses. The hypothesis space must be
structured such that from looking at the observations and at some
hypotheses, we get information on which hypotheses to examine
next. This is an instance of partial credit.

For tree-generating programs, partial credit can be achieved
by augmenting the representation language of the learner such
that each tree-generating program expressed in this language can,
with some small probability, generate an arbitrary tree. In par-
ticular, we can achieve this by first specifying a tree-generating
program that can generate every tree and then allowing at each
node that the generating process switches with some small prob-
ability from the “real” program to the program that can generate
any tree. Thus, in inference, common root structure is used as far
as possible, but if the desired observed tree could otherwise not
be generated from the current hypothesis, the all-including small-
probability process is used. Thereby, the probability of an arbi-
trary observed tree being generated from some hypothesis tree-
generating process is not automatically 0 if the hypothesis only
gets the observation partially right.

In this chapter, I have described the setup of the demonstra-
tion we use to show how learning of generative models can work.
We have chosen a world that consists of simple, stochastic, tree-
generating programs with the observations being trees with col-
ored nodes and, for the learner, a matching representation lan-
guage an bias. In the next chapter, I will show what the actual
implementation of the learner looks like and how it fares in this
world.
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Chapter 6

Learning

How does an example of concept induction in a simple world look
like? This is the question I want to answer in this chapter. In
the last chapter, we have seen a toy world that consists of struc-
tured, tree-generating programs. The learner — who has the job
to infer the true structure of the world from observations — uses
a representation language with primitives and inductive bias both
matched to the tree world. We have already seen a formalization
of the problem of learning and reasoning in a structured world, and
we have also seen two inference mechanisms that, in combination,
can be used to learn representations from structured observations.
In this chapter, I will show what this kind of structure learning
looks like for the tree world.

6.1 Method

In the chapter on inference, we have seen that the problem of find-
ing a good model for one’s observations can be decomposed into
the subproblems of model scoring and model space exploration.
Subsequently, we have looked at adaptive importance sampling,
an inference algorithm that can be used to efficiently score mod-
els, and Markov Chain Monte Carlo, an inference algorithm that
can be used sample from the posterior distribution over models.

As was the case in the model chapter, it is still our goal to
sample from the distribution over hypothetical model expressions
conditioned on the observations generated from the hypothetical
model being equal to the true observations. The more likely our
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hypothetical model is to have generated the observations, the more
probable it needs to be that we sample this model. At the same
time, not only the likelihood of the observations should factor into
the total score of a model, but also the random choices that were
made when the model was generated: The more random choices
were made, the less likely the model is a priori, the less probable
we want it to be under the posterior.

We achieve this goal by writing down a generative model that
first generates an expression and, subsequently, scores the true
observations under the program defined by this expression. Using
Church’s universal mh-query, we condition the output on the es-
timated score, thus making those models most probable that best
account for the observations. At the same time, the randomness
that went into generating the expression factors into the posterior
distribution through the generative model: the MH algorithm is
less likely to go sample states that have lower prior probability,
which is the case for more complex expressions.

For each observed tree, we estimate the likelihood that the
program defined by the expression hyp-expression returns this
tree using our adaptive importance sampler. Then, the total like-
lihood of the observations under the current hypothesis is the
product of the individual observation likelihoods. Since we are
not only interested in sampling expressions for hypothetical mod-
els of the observed data, but also in the estimated likelihood of
the data under each hypothetical model, we query on both, i.e.
let our samples contain pairs of model expression and likelihood
of observations.

In code:

(mh-query
; The generative model ’in the head’:
((define hyp-expression (sample-expression))
(define observation-likelihoods

(map (lambda (tree)
(ais-estimate-prior hyp-expression tree))

observed-trees))
(define logscore (sum observation-likelihoods)))

; What we want to know:
(pair hyp-expression logscore)
; Condition:
(log-flip logscore)
(get-env))

(6.1)
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(a) (b)

Figure 6.1: Observed trees for which we want to find a generators.

6.2 Illustration

In the following, I will illustrate a sequence of programs that step
by step have a higher estimated likelihood for the observation pic-
tured in figure 6.1. This is for two reasons: First, this shows
that computing the likelihood of the observations by adaptive im-
portance and using our tree grammar results in a very intuitive
sequence of likelihoods in the following sense: Programs for which
the likelihood of the observations is rated as high are actually those
programs that intuitively seem likely to have generated the obser-
vations. The second reason for showing this sequence of programs
is to give an idea of the way mh-query would sample hypothetical
programs given observations.

In contrast to the following sequence, a sequence of MH sam-
ples usually looks less like the result of a hill climbing algorithm
than the following illustration1. However, starting from an ex- 1Since MH accepts samples

proportional to their posterior
score, going from a sample with a
high score to a lower-scoring
sample is perfectly possible — it
only happens proportionally less
often than going to another
high-scoring sample.

pression for which the observations have low likelihood, the step-
by-step construction of an expression with higher likelihood looks
very similar if done by MH sampling.

On the left of the following illustration, the program is pre-
sented in a way that exposes its structure. Programs are not
identical to trees; as we have seen in the previous chapter, every
program can give rise to any tree in order to allow the computation
of a meaningful partial-credit carrying likelihood for all observa-
tions. However, for a program like (node ’a), all trees but the
one that carries only a single node of the appropriate color have
very low probability.

On the right, the estimated loglikelihood of the observations is
shown, with the likelihood of observation 1 making up the left
side of the bar and that of observation 2 the right side. The
smaller the bar is for a program, the larger is the loglikelihod of
the observations under this program.
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Program Loglikelihood of Observations

−250 −200 −150 −100 −50 0

−250 −200 −150 −100 −50 0

−250 −200 −150 −100 −50 0

−250 −200 −150 −100 −50 0

−250 −200 −150 −100 −50 0

−250 −200 −150 −100 −50 0

−250 −200 −150 −100 −50 0

−250 −200 −150 −100 −50 0

−250 −200 −150 −100 −50 0

−250 −200 −150 −100 −50 0
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Program Loglikelihood of Observations

−250 −200 −150 −100 −50 0

−250 −200 −150 −100 −50 0

λ(t)

t t

−250 −200 −150 −100 −50 0

λ(t)

t t

?

−250 −200 −150 −100 −50 0

λ(t)

t t

?

−250 −200 −150 −100 −50 0

In code, the final program looks like this:

((lambda (t) (node ’a t t))
(node ’b

(if (flip)
(node ’c (node ’d) (node ’d))
(node ’b (node ’b)))

(node ’a)))

(6.2)

Lambda abstraction captures the duplication of tree structure
in a concise way and the stochastic choice (if (flip) ...) takes
care of partial variation in the observations.

There are two reasons why our learner will prefer the program
using lambda abstraction to an analogous program without ab-
straction, and only the first one is captured in the plots above:
The observed data is more likely under this program since fewer
random choices have to be made to generate the data. By du-
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plicating a branch using abstraction, all the randomness in this
branch factors only once into the likelihood computation instead
of twice. The other reason is that the program itself is shorter
and thus more likely a priori, since fewer random choices have to
be made in generating this program from the distribution over
programs.

Having seen qualitatively how a program can be constructed
step by step by looking at which changes improve the likelihood
of the observations that this program is supposed to give rise to,
we will now take a more quantitative approach and look at how
the Metropolis-Hastings inference algorithm (code 6.1) performs
when run on randomly generated expressions and observations.

6.3 Quantitative Experiments

The goal of this section is to show that learning tree-generating
programs from observations reliably works if we use the methods
described in the previous chapters. I will first describe the learn-
ing setup including which statistics I collect, then show some of
the results (with all of them being in the appendix) and some
aggregate statistics. Finally, I discuss what we can and cannot
conclude from the data we have collected.

Before we can design our demonstration, we need to define our
measure of success: What does it mean that learning generating
programs for observations works? One option for such a measure
is the successful recovery of the program that originally generated
the observations — the actual structure out there in the world. If a
learner is given a few observations and then systematically assigns
high probability to the true generator, then it is clearly a successful
learner. However, since we only get to look at a few observations,
the true structure may not always be the best explanation. The
best explanation of an observation is the explanation that, across
all situations that could give rise to this observation and weighted
by how often the situations occur, most accurately reflects the
true distribution over situations.

In the sequence of programs that was illustrated in the last sec-
tion, the best explanation was one that used lambda abstraction
to account for recurring structure. In contrast, our quantitative
experiments will not include lambda abstraction, neither in the
true programs that generate observations nor in the grammar that
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is available for inference. The reason for this constraint is that,
in order to efficient MCMC inference over the space of programs
that includes lambda abstraction, there must be proposals that
allow the algorithm to switch between a program without lambda
abstraction to a program with lambda abstraction and vice versa.
Moreover, in order to stochastically walk through the space of
programs that includes lambda abstraction in a way that results
in efficient inference, there must not only be a way to construct
programs with lambdas, but these states must be reachable from
similar programs that do not use lambdas. For example, there
must be a way to go from

(node ’b
(node ’a (node ’b) (node ’c))
(node ’a (node ’b) (node ’c)))

(6.3)

to

((lambda (x) (node ’b x x))
(node ’a (node ’b) (node ’c))

(6.4)

and back2. If the programs with lambda abstraction are not reach- 2This type of proposal has been
proposed by Noah Goodman, who
named it “inverse inlining”.

able from similar programs without lambdas, the inference algo-
rithm will not efficiently explore the different modes of the distri-
bution over programs and instead mostly be stuck in one or the
other — it will not “mix well”. Lambda learning will allow us to
infer more interesting and varied programs from observed data,
but its implementation remains future work.

The basic idea of the setup we will use to quantitatively demon-
strate program learning is to randomly generate programs and
then test how well our inference algorithm performs on observa-
tions generated from these programs, measured by how likely the
observations are under the inferred programs compared to the true
generating programs. In sequence:

1. We first sample a random tree-generating program from the
probabilistic grammar that defines which tree worlds are
possible.

2. By running this program, we sample structured observa-
tions, i.e. trees.

3. We estimate the likelihood of these observations under the
true generating program.

63



4. We run the inference algorithm (MCMC with AIS scor-
ing) on these observations, thus sampling programs that
could have generated the observations, together with the es-
timated likelihood of the observations under each program.

5. We plot the true likelihood of the observations together with
the estimated likelihood under the programs that were in-
ferred from the observations.

In total, I have run the sequence described above 79 times,
thus creating 79 tree-generating programs, 79 worlds. From each
of these, 5 observations have been sampled. Using these obser-
vations, the inference algorithm was run for 2000 MH steps, i.e.
2000 programs3 were learned in each of the 79 worlds.3together with the likelihood of the

observations under these programs
Figure 6.2 shows the result of the first twelve runs. The es-

timated true likelihood is shown with a green line, the likelihood
of the observations under each of the 2000 sampled programs is
shown in black. The plots show that the MCMC algorithm starts
out with a program that does not explain the observations very
well, but after a short time samples from a region of the state
space where most of the programs do explain the observations
well. For a complete listing of the results, including information
on what the generating programs were, see the appendix.

Figure 6.3 summarizes these results by showing how the (es-
timated) likelihood of the observations under the true genera-
tion program relates to the highest (estimated) likelihood for all
learned programs. As illustrated by the fact that the best learned
likelihood is often as high as or higher than the true likelihood
(i.e. many points are on or above the middle line in the rescored
figure), the learned programs do well at explaining the observed
data.

The fact that there are several programs which do not explain
the observations well can be explained by looking at the list of
experimental results and programs in the appendix. Those obser-
vations that were not explained well within 2000 MH samples are
almost always those generated by complex programs, and it is rea-
sonable to suggest that running the inference engine for a longer
amount of time would result in programs being learned for these
observations, too. It is nonetheless worthwhile to ask how the in-
ference algorithm scales with the length of the smallest programs
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that can explain the data well; this task, however, is beyond the
goals of this thesis.

In the last sections, we have seen the tree world as a practi-
cal example of how programs can be learned from observations.
We started by looking at the (fully general) basic idea of using
a combination of Markov Chain Monte Carlo methods to explore
the space of possible programs together with adaptive importance
sampling to score how likely any given observation is under a
given program. We have then first given an illustration of how
small changes to a program can lead to a sequential increase in
the likelihood of the observation, thus allowing for a smooth tra-
jectory from programs that do not explain the observations well
to those that do. Finally, I have argued that this works reliably
in the tree domain by showing how explanations can be learned
for observations created from randomly generated programs.

In the remainder of this thesis, I will discuss what the results
in this chapter mean and what the adaptive importance sampling
algorithm can be used for more generally, which related work there
is and what future research looks most promising. Finally, I will
conclude by reviewing the content of this thesis by summing up
the main points from each chapter.
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Figure 6.2: MCMC results for a few programs. For the complete statistics, see the
appendix.
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Figure 6.3: MCMC results summarized. Rescoring the sampled programs with 300
importance samples instead of the 30 that were used at each MH step exposes cluster
structure (programs with one flip, two flips) and removes the selection bias present in the
first figure (with high estimation variance in the scores, selecting the learned program
with the best score results in scores that are only accidentally high).
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Chapter 7

Discussion

7.1 Interpretation

Given that most chapters already discuss their respective findings,
I will only discuss two questions here that strike me as particularly
important. First, what do the results in the chapter on learning
actually show? Second, to what extent is the class of adaptive
importance sampling algorithms that we have derived generally
useful rather than problem-specific?

Starting with the results in the chapter on learning in a sim-
ple toy world: What do they show beyond the immediate result
that in this world generative models can be recovered from ob-
servations? One generalization of this result is that, if you can
efficiently estimate the likelihood of observations under any given
generative model, and if you can explore the space of generative
models efficiently, then you can find programs that explain the ob-
servations well. We used two main ingredients to make these two
operations efficient: Adaptive importance sampling to score mod-
els and a representation language that expresses models such that
they can generate any observation with nonzero, graded probabil-
ity. Lessons one might learn are that sampling algorithms should
use any information about the posterior distribution to generate
better samples (here: evidence pushing, adaptation) and samples
should provide information on where to look for better samples
(partial credit).

To what extent is the class of adaptive importance sampling al-
gorithms that we have derived generally useful rather than problem-
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specific? In its current form, the information propagation rule
of the algorithm assumes that the operands are evaluated inde-
pendently, an assumption that clashes with the idea of delayed
evaluation that we used to push the evidence through compound
procedure applications. As a consequence, the current algorithm
suffers from inefficiencies when applied to programs containing
compound procedures and is best seen as a preliminary version
of the final algorithm. However, there is a natural extension we
call “sequential inverses” that will allow us to combine delayed
evaluation and adaptation at primitive procedures. Once the in-
formation propagation rule is extended to its more general form,
this algorithm can be used to sample solutions to logical satis-
fiability problems, to parse the yield from grammars, even from
those that do not fall inside the class of context-free or context-
sensitive grammars, and to solve similar problems where large
parts of the (prior) state space are impossible under the posterior
distribution. A closer examination of the capabilities of the class
of algorithms will only be possible once the proposed extension
has been completed.

7.2 Related Work

An important part of the related work has already been men-
tioned in the chapter describing the philosophical, statistical and
computational background of our approach. In particular, this
includes the idea of a language of thought (due to Fodor [Fod76])
and the Bayesian approach to probabilistic inference (promoted
by Jaynes, among others [JB03]). However, there are two re-
search programs that have been relevant to this project, but not
sufficiently exposed so far. The first is the psychological research
program built on the exploration of a hypothesized probabilistic
language of thought, the second is the prior research on adaptive
importance sampling algorithms.

The Probabilistic Language of Thought research program headed
by Noah Goodman provides the scientific context that gave rise
to this work, and most of the ideas that are part of this work are
ideas developed within this research program. In [GTFG08], a
Bayesian model of concept learning is presented and tested using
a grammatically structured hypothesis space. One way of looking
at the current work is to see it as a generative and more com-
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putational version of this discriminative, more psychological, and
more empirical work. [KGT08] makes use of a compositional lan-
guage of thought to explain the learning of intuitive theories on
a computational level. This research program also gave rise to
the probabilistic programming language Church [GMR+08] that
was fundamental to the implementation of our project. The next
bigger context that subsumes both this work and the probabilis-
tic language of thought program is the Bayesian, computational
approach to concept learning and to cognitive science in general
[TR99].

There are a few inference algorithms that are in the same spirit
as our adaptive importance sampler for probabilistic programs.
The most similar algorithm known to me is SampleSearch [GD07]
which, in contrast to our algorithm, is based on backtracking in-
stead of adaptation and which is only asymptotically unbiased,
whereas our algorithm results in unbiased estimates. In addition,
like AIS-BN [CD00] and Ortiz and Kaelbling’s adaptive impor-
tance sampler [OK00], these algorithms are written for graphical
models and do not make use of the more intricate structure of
probabilistic programs. Systematic Stochastic Search [MRJT] is a
sequential rejection sampler that has the same property. Whereas
our algorithm conditions only on the relevant environment of an
expression when learning how to sample from it, this algorithm
conditions on the complete prior evaluation history and thus does
not generalize from its adaptations. Pfeffer [Pfe07] presents an
importance sampling algorithm for probabilistic programs, which
makes use of delayed evaluation and of checking ahead of time
what values an expression can return. However, in contrast to
our algorithm, this algorithm is not adaptive.

7.3 Future Research

Due to the broad nature of the approach to learning and reasoning
that we took, and due to the broad nature of the topic itself, there
are many directions future research could take. I will limit myself
to sketching those that are both exciting and realizable in the near
term.

Instead of having the learner passively infer the structure of the
world from observations that cannot be influenced by the learner,
we could consider an active setting. Here, an agent interacts with
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the environment in a goal-directed way; what and how to learn
might then not be based on considerations of epistemic accuracy,
but instead on utilitarian considerations. We might look at se-
tups similar to those used in reinforcement learning, but consider
structured generative models as more interesting, useful and real-
istic representations for world model, goals, and actions than the
representations that are commonly used.

The programs that were learned in the demonstration are com-
posed of more elementary parts, and the learning happens in a
stepwise fashion, but there is an even more interesting element to
the idea of compositionality that we did not make use of: The idea
of reusing programs that were itself learned, an idea that enables
a learner to gain expressive power with each new concept in its
knowledge repository. This idea is tied to a number of proposals
for future research, the overarching theme being the idea of learn-
ing systems of concepts. Technically, one might achieve this by
allowing inverse inlining proposals, i.e. proposals that move from
programs without lambda abstraction to programs with lambda
abstraction. Both sequential learning and simultaneous learning
are interesting from a computational and from a psychological per-
spective. In sequential learning tasks, concepts that are learned
earlier on are reused in the compositional structure of subsequent
concepts if this allows the world model to be expressed more con-
cisely. This makes the ordering of the learning data significant.
A similar idea is to make the world itself change such that the
learner step by step accumulates evidence that his current theory
is no longer accurate until a theory revision is justified. In si-
multaneous learning, multiple concepts need to be extracted from
observations at once, and which conceptual properties make this
easy, which make it hard, and how exactly this can be done by ei-
ther humans or machines is a question that future research needs
to answer.

I have presented probabilistic inference over structured gen-
erative models as a computational theory of both learning and
reasoning, but in the actual demonstration, I have only shown
learning. Clearly, accurate beliefs are of very limited use if one
cannot use them to reason about the world, and a demonstra-
tion of a computational model of reasoning, in particular if it
combines inductive and deductive reasoning in an elegant way,
will be an important task for future research. Exploiting the fact
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that what our model of learning infers is a richly structured gen-
erative model, a natural extension to reasoning is the following:
Conditional sampling from the generative world model allows the
learner to make inductive predictions about any property of the
world that can be expressed within the representation language.
By giving no special treatment to deduction, but instead taking
it to be just a limiting case of induction, approximate deductive
reasoning becomes feasible within the framework of probabilistic
inference. How productive this view on deduction is, both from a
psychological and from a machine learning perspective, is an open
question.

How could we test whether the characterization of concept
learning as program induction is an adequate description of what
humans do? Building on the research that has already been
done on modeling concept learning as Bayesian inference over a
language-like hypotheses space [GTFG08], we might consider a
sequence of experiments to test in how far a hypothesis space
defined by a language for generative model predicts human per-
formance. Starting with the tree visualizations developed in this
thesis, we can compare the generalization performance first for
tree-generating programs without lambda abstraction, then for
programs that use lambda abstraction to enable reuse of branches
and finally for those that use higher-order functions. One partic-
ularly interesting test would be to determine whether a language
based on generative models makes better predictions in this task
than a discriminative classifier based on surface features.

Simple versions of problems are often amenable to methods
that cannot be used to solve more complex and more data-intensive
versions. If we want to infer more complex programs from obser-
vations, what needs to change to make our approach scale?

If the same basic model of partitioning the problem into explo-
ration and scoring is maintained, then we need to make sure that
both are efficient for larger programs. For the exploration part,
if we keep MCMC as the query implementation, then efficiency
means that we need to explore the high-probability regions of our
hypothesis space quickly, which, for large hypotheses spaces, de-
pends on making good proposals. Here, one idea would be to
randomly choose any node in the program trace (not necessarily
an erp) and then to use adaptive importance sampling to regen-
erate a trace that fulfills the constraint at this node. However, in
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how far this can be used to make efficient proposals for program
learning is an empirical question, and we might find out that a
yet unknown alternative to MCMC results in more efficient infer-
ence. For the scoring part, if we keep the adaptive importance
sampler, the efficiency will depend on the exact features used by
the program to be learned (e.g. random operators might result in
difficulties), on the number of likely parses per observation and on
the state of the algorithm (e.g. on whether soft adaptation is im-
plemented and if yes, what its convergence properties are). There
is no in-principle reason why scoring would not work efficiently
for larger programs, however the exact scaling properties remain
the realm of future work.

More generally, exploiting incremental learning might be cru-
cial to learning complex programs. If abstraction can be used
to first learn simple programs that can be combined into more
complex programs later on, then the fact that jumps between
different complex programs require only small variations in the
combinations of constituent programs might enable more efficient
inference. The other side of incremental learning is what could be
called “learning to learn”: By using the adaptive importance sam-
pler for a long time, the importance table will accumulate useful
information on which values are how likely under which expres-
sions and in which environments. A large importance table that
persists across program runs might help to more quickly learn
even complex programs. Due to the easy way to merge a large
number of weighted samples from different distributions into one
estimate, adaptive importance sampling is very easy to parallelize
across computers. Such a parallelization, possibly together with
a shared importance table, might help to solve the problem of
learning complex programs if the algorithms used are not in the
wrong complexity class for this task. This, too, is an interesting
question for future research.
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Chapter 8

Conclusion

We started out with the question how an agent could learn and
reason in a structured, probabilistic world. In the following, I will
review the progress that we have made, first by giving an overview,
then by explaining more precisely what has been achieved in each
of the chapters.

After first philosophical considerations on what the properties
of a medium of thought must look like, we presented a formaliza-
tion of learning and reasoning as probabilistic inference. In order
to give a practical example of this formalization for a simple but
interesting world, we first described two methods of inference,
one of them being a new class of importance sampling algorithms
for probabilistic programs. After describing the desiderata for a
simple example of learning programs from observations, we first
illustrated what learning looks like in this example, then quantita-
tively showed that inferring programs from observations reliably
works. I will now describe these steps one by one.

As a first step, we considered what an informational substrate
of thought might look like. If an agent systematically derives true
statements about an object that is out there in the world and
that is no currently perceived, then the information that is neces-
sary to derive these statements must be found somewhere within
that agent: The object must have a representation. The informa-
tional structure that is used to store representations must have
certain properties: Representations must be able to be combined
in a productive way, the meaning of compound representations
must (among other factors) be determined by the constituents,
the relation between compounds and constituents must be a sys-
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tematic one, and both real and possible states of affairs must be
expressible in this medium. One kind of representation that is
particularly useful are (stochastic) generative models, i.e. models
that mirror the causal structure of some process in a way that lets
us generate observations from the model and that lets us invert
the model to infer hidden properties of the process.

Having established the properties of mental representations,
the next step in our process of reductive explanation was to find a
way to formally talk about these kinds of representations and to
give a formal account of what it means to learn and reason with
these kinds of representations. Probability theory is our best tool
to formally talk about uncertainty, and programming languages
are our best tools for the formalization of processes that gener-
ate values, therefore, I have used the probabilistic programming
language Church to formally talk about stochastic generative pro-
cesses. If, using this language, we can formalize beliefs within the
Bayesian probability calculus, which itself can be derived from
relatively weak common sense and consistency assumptions, then
Bayes’ rule normatively determines how these beliefs need to be
updated in light of new data. On a computational level, both
learning (formalized as inferring a model from observations) and
reasoning (formalized as determining whether a proposition is true
in a given model) can then be interpreted as probabilistic infer-
ence.

In order to move towards a practical demonstration of learn-
ing generative models, we needed to solve the problem of how to
do inference over generative models. We have decomposed the
problem of learning these models into two parts: First, given ob-
servations and a model, how can we score the model? Second, how
do we explore the space of possible models efficiently? In order to
solve the first question, we have derived a new class of adaptive
importance algorithms for probabilistic programs that rely on two
principles: When evaluating a program, push the evidence as far
down the evaluation as possible, thus sampling from a distribution
that is close to the posterior distribution p(model|data). After
each evaluation, adapt the distribution we are sampling from, us-
ing any information we have learned during the evaluation about
what values can and cannot be returned by subexpressions. The
second inference method we use is called Markov Chain Monte
Carlo; here, the main idea is to construct a Markov chain that
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has as its long-run distribution the distribution we want to sam-
ple from. Taken together, these two inference methods let us infer
programs from observations.

The setup of the actual learning demonstration was as fol-
lows: A structured world generates observations, and the task of
the learner is to construct a generative model of the world that
closely mimics the actual world. Of our demo world, we required
that it contains interesting structure, that this structure can be
(approximately) recovered from observations, and that the world
is stochastic and simple. The world that we chose is one that
consists of a stochastic tree-generating program, with the obser-
vations being trees with colored nodes. For the learner, we chose
a representation language that offers an inductive bias over worlds
that closely matches that of the true world-generating process and
that can be used with partial credit, i.e. that, when we compute
the likelihood of observations under a model that is almost right,
this likelihood is higher than for a model that is completely wrong.

In our demonstration of structure learning for the tree world,
I have first described how to combine Markov Chain Monte Carlo
with adaptive importance sampling such that we can explore the
space of possible programs. I have then demonstrated how small
improvements to a program can lead to a sequential increase in
the likelihood of the observations, thus allowing for a smooth tra-
jectory from programs that do not explain the observations well
to those that do. Finally, I have argued that this works reliably
in the tree domain by showing how explanations can be learned
for observations created from randomly generated programs.

There is a variety of directions one could take to further ex-
tend this work. On the learning side, the most notable are an
extension to learning with lambda abstraction, learning in an ac-
tive setting, and learning systems of concepts. On the algorith-
mic side, more intelligent procedure inversion and parallelizing the
adaptive importance sampler promise the most immediate bene-
fits. The framework of learning and reasoning with generative
models expressed in a probabilistic language of thought promises
to offer solutions to a large number of open questions in psychol-
ogy and artificial intelligence, and one goal of this work has been
to illustrate this possibility using the simplest example that could
do.
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Appendix

Experimental Results
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Sampled Programs

# Program
1 (lambda () (node ’a (node ’a)))
2 (lambda () (if (flip) (node ’d (node ’b)) (node ’a)))
3 (lambda () (node ’a (node ’b)))
4 (lambda () (node ’a (node ’d)))
5 (lambda () (if (flip) (node ’a (node ’c (node ’d (node ’c)) (node ’d))) (node ’b (node ’c) (if

(flip) (node ’b (if (flip) (node ’b) (node ’c))) (node ’b)))))
6 (lambda () (if (flip) (node ’a) (node ’d (node ’a))))
7 (lambda () (if (flip) (node ’a (if (flip) (node ’b) (node ’c))) (node ’a (node ’d (node ’c (if

(flip) (node ’a) (node ’a)) (node ’b))))))
8 (lambda () (node ’b (if (flip) (node ’b) (node ’c)) (node ’c) (if (flip) (node ’d) (node ’b))

(node ’a) (node ’d))) a) (d)))
9 (lambda () (if (flip) (node ’c) (node ’c)))
10 (lambda () (if (flip) (node ’a (if (flip) (node ’a) (node ’b))) (node ’b)))
11 (lambda () (node ’c (node ’c) (if (flip) (node ’a) (node ’c)) (if (flip) (node ’c) (node ’a))

(node ’b)))
12 (lambda () (node ’a (node ’d) (if (flip) (node ’d) (node ’d))))
13 (lambda () (node ’d (node ’c) (if (flip) (node ’a) (node ’a))))
14 (lambda () (node ’c (node ’b))) b)) (c (b)))
15 (lambda () (node ’a (node ’b))) b)) (a (b)))
16 (lambda () (node ’a (if (flip) (node ’b) (node ’b)) (if (flip) (node ’b) (node ’c)) (node ’b)))
17 (lambda () (node ’b (if (flip) (node ’a) (node ’d))))
18 (lambda () (node ’c (node ’b))) b)) (c (b)))
19 (lambda () (if (flip) (node ’d (node ’c) (if (flip) (node ’b) (node ’d)) (node ’d) (node ’b (node

’d)) (node ’c) (node ’c)) (node ’a)))
20 (lambda () (node ’a (node ’a) (node ’c))) (a) (c)) (a (a) (c)))
21 (lambda () (node ’b (node ’b))) b)) (b (b)))
22 (lambda () (node ’d (node ’d))) d)) (d (d)))
23 (lambda () (if (flip) (node ’d) (node ’d)))
24 (lambda () (node ’b (if (flip) (node ’c) (node ’b))))
25 (lambda () (node ’b (node ’a) (node ’b (if (flip) (node ’b) (node ’c (node ’a))) (node ’b) (node

’d) (if (flip) (node ’a) (node ’c))) (node ’a) (node ’a))) (b (a) (b (c (a)) (b) (d) (a)) (a)
(a)))

26 (lambda () (node ’b (node ’c))) c)) (b (c)))
27 (lambda () (if (flip) (node ’b) (node ’d)))
28 (lambda () (node ’c (node ’b (node ’b (if (flip) (node ’a) (node ’c)))) (if (flip) (node ’d)

(node ’b)) (node ’a) (node ’a (if (flip) (node ’b) (node ’c)) (node ’d))))
29 (lambda () (node ’c (node ’d (node ’d)) (node ’b (if (flip) (node ’c) (node ’a (node ’b))) (if

(flip) (node ’a) (node ’a)))))
30 (lambda () (node ’b (node ’a) (node ’b)))
31 (lambda () (node ’c (node ’c (node ’a) (node ’c) (if (flip) (node ’d) (node ’b)))))
32 (lambda () (node ’a (if (flip) (node ’a) (node ’a))))
33 (lambda () (node ’a (node ’d))) d))
34 (lambda () (node ’b (if (flip) (node ’b (node ’d)) (node ’a))))
35 (lambda () (node ’b (node ’c)))
36 (lambda () (if (flip) (node ’a) (node ’d)))
37 (lambda () (if (flip) (node ’b (node ’a)) (node ’b (node ’a (node ’a)))))
38 (lambda () (node ’a (node ’d (if (flip) (node ’d (if (flip) (node ’d (node ’c)) (node ’c))) (node

’c)))))
39 (lambda () (node ’a (node ’d (node ’d))))
40 (lambda () (node ’a (if (flip) (node ’b (node ’d)) (node ’b))))
41 (lambda () (if (flip) (node ’c) (node ’b (node ’a) (node ’b))))
42 (lambda () (if (flip) (node ’a) (node ’d (node ’c) (node ’d (node ’b)))))
43 (lambda () (node ’a (node ’b (node ’c)) (node ’d) (node ’d) (node ’c) (node ’b)))
44 (lambda () (if (flip) (node ’c) (node ’b)))
45 (lambda () (node ’c (node ’d))) d))
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# Program
46 (lambda () (node ’b (node ’c) (node ’b)))
47 (lambda () (node ’b (node ’c)))
48 (lambda () (if (flip) (node ’d) (node ’b)))
49 (lambda () (node ’b (node ’d) (node ’c)))
50 (lambda () (node ’d (node ’d) (node ’c) (node ’b)))
51 (lambda () (node ’b (node ’c) (if (flip) (node ’b) (node ’d (if (flip) (node ’a) (node ’c))))))
52 (lambda () (node ’a (if (flip) (node ’d (node ’a) (node ’d)) (node ’a))))
53 (lambda () (node ’d (node ’d (node ’a)) (if (flip) (node ’d) (node ’a (node ’d) (node ’b)))))
54 (lambda () (if (flip) (node ’a) (node ’c)))
55 (lambda () (if (flip) (node ’a (node ’c)) (node ’d (node ’d) (if (flip) (node ’d) (node ’a)) (if

(flip) (node ’b) (node ’c)))))
56 (lambda () (if (flip) (node ’d (node ’c)) (node ’a)))
57 (lambda () (node ’c (node ’d) (node ’d)))
58 (lambda () (node ’d (node ’b (node ’b))))
59 (lambda () (if (flip) (node ’a (node ’a)) (node ’d)))
60 (lambda () (node ’d (if (flip) (node ’c) (node ’d)) (node ’b) (node ’b) (node ’d) (if (flip)

(node ’c) (node ’a)) (if (flip) (node ’a) (node ’a (node ’a))) (node ’a)))
61 (lambda () (node ’c (node ’d (if (flip) (node ’d) (node ’b)))))
62 (lambda () (if (flip) (node ’d) (node ’d (node ’a) (node ’d))))
63 (lambda () (node ’c (if (flip) (node ’b) (node ’a (node ’a)))))
64 (lambda () (node ’d (node ’b (node ’c)) (node ’c (node ’b) (node ’d)) (if (flip) (node ’a) (node

’d (node ’d))) (node ’c)))
65 (lambda () (node ’c (node ’c) (node ’b)))
66 (lambda () (if (flip) (node ’d (node ’c (if (flip) (node ’a) (node ’d)) (node ’c (node ’c)))

(node ’d)) (node ’a (if (flip) (node ’d) (node ’b (if (flip) (node ’b) (node ’b)))))))
67 (lambda () (node ’d (node ’d)))
68 (lambda () (if (flip) (node ’b) (node ’b (node ’a) (node ’b))))
69 (lambda () (node ’c (if (flip) (node ’c) (node ’c))))
70 (lambda () (node ’b (if (flip) (node ’a (node ’a)) (node ’a)) (node ’d) (if (flip) (node ’c (node

’c (node ’c))) (node ’c))))
71 (lambda () (node ’b (node ’b (node ’a) (node ’d))))
72 (lambda () (node ’b (node ’a (if (flip) (node ’d) (node ’c)))))
73 (lambda () (node ’b (node ’c) (node ’d (node ’b) (if (flip) (node ’b) (node ’c)) (node ’b))))
74 (lambda () (if (flip) (node ’b (node ’c)) (node ’b)))
75 (lambda () (node ’d (if (flip) (node ’d) (node ’a (node ’b) (node ’a))) (node ’d)))
76 (lambda () (if (flip) (node ’d) (node ’b (node ’c))))
77 (lambda () (node ’c (node ’c) (node ’d)))
78 (lambda () (node ’c (node ’a) (node ’d)))
79 (lambda () (node ’b (if (flip) (node ’c (if (flip) (node ’a) (node ’d))) (node ’a (node ’c) (if

(flip) (node ’d) (node ’d))))))
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