
Modeling Cognition with Probabilistic Programs:
Representations and Algorithms

by

Andreas Stuhlmüller

Submitted to the Department of Brain and Cognitive Sciences
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Cognitive Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

© Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Department of Brain and Cognitive Sciences

March 28, 2015

Certified by .
Noah D. Goodman

Assistant Professor, Stanford University
Thesis Supervisor

Certified by .
Joshua B. Tenenbaum

Paul E. Newton Career Development Professor
Thesis Supervisor

Accepted by. .
Matthew A. Wilson

Sherman Fairchild Professor of Neuroscience and Picower Scholar
Director of Graduate Education for Brain and Cognitive Sciences

2

Modeling Cognition with Probabilistic Programs:

Representations and Algorithms

by

Andreas Stuhlmüller

Submitted to the Department of Brain and Cognitive Sciences
on March 28, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Cognitive Science

Abstract

This thesis develops probabilistic programming as a productive metaphor for under-
standing cognition, both with respect to mental representations and the manipulation
of such representations.

In the first half of the thesis, I demonstrate the representational power of proba-
bilistic programs in the domains of concept learning and social reasoning. I provide
examples of richly structured concepts, defined in terms of systems of relations, sub-
parts, and recursive embeddings, that are naturally expressed as programs and show
initial experimental evidence that they match human generalization patterns. I then
proceed to models of reasoning about reasoning, a domain where the expressive power
of probabilistic programs is necessary to formalize our intuitive domain understand-
ing due to the fact that, unlike previous formalisms, probabilistic programs allow
conditioning to be represented in a model, not just applied to a model. I illustrate
this insight with programs that model nested reasoning in game theory, artificial
intelligence, and linguistics.

In the second half, I develop three inference algorithms with the dual intent
of showing how to efficiently compute the marginal distributions defined by proba-
bilistic programs, and providing building blocks for process-level accounts of human
cognition. First, I describe a Dynamic Programming algorithm for computing the
marginal distribution of discrete probabilistic programs by compiling to systems of
equations and show that it can make inference in models of “reasoning about rea-
soning” tractable by merging and reusing subcomputations. Second, I introduce the
setting of amortized inference and show how learning inverse models lets us leverage

3

samples generated by other inference algorithms to compile probabilistic models into
fast recognition functions. Third, I develop a generic approach to coarse-to-fine in-
ference in probabilistic programs and provide evidence that it can speed up inference
in models with large state spaces that have appropriate hierarchical structure.

Finally, I substantiate the claim that probabilistic programming is a productive
metaphor by outlining new research questions that have been opened up by this line
of investigation.

Thesis Supervisor: Noah D. Goodman
Title: Assistant Professor, Stanford University

Thesis Supervisor: Joshua B. Tenenbaum
Title: Paul E. Newton Career Development Professor

4

Acknowledgments

I had two caring mentors, and many others who made this thesis what it is.

First and foremost, I thank Noah Goodman—for teaching me most of what I know

about cognitive science, for constraining my random walk through project space just

the right amount, for being sufficiently ambitious, and for fresh ideas, even after all

these years.

Josh Tenenbaum, for responding to my out-of-the-blue e-mail many years ago

(which set this entire project in motion), for his good taste in research, for much-

needed guidance early on, and for letting me explore, even when those explorations

led me to the other side of the country.

But let’s start at the beginning, which for our purposes is Osnabrück.

I thank Elmar Cohors-Fresenborg for the class “Formalisierung von Wissen”,

which shaped my thinking about the structure of knowledge; and Frauke Harms,

Paula Henk, Falk Lieder, and Jonas Lorenz, for intellectual companionship when we

encountered these ideas together.

Lena Kästner, Katharina Wilmes, Corinna Zennig, Tim Schröder, Nico Möller,

Benedict Küster, Nicole Troxler, Lucas Theis, Alexandra Surdina, and Christiane

Mietzsch, for making college feel social and warm; and Tobias Grage, for Rosenstolz.

Natalie Schaworonkow, for unfailing authenticity.

Frauke Harms, for lasting friendship.

Sven Walter, Achim Stephan, and Kai-Uwe Kühnberger, without whom my stay

at MIT wouldn’t have been possible; and Frank Jäkel, without whom I would have

felt alone when I first got there.

At MIT, I met some who are now my closest friends.

I thank Owain Evans, for charitable and reasoned engagement with weird ideas.

5

Leon Bergen, for equally reasoned engagement with not-so-weird ideas.

John McCoy, for friendship, inventiveness, and for letting me live in his basement.

Jon Malmaud, for saying things you can’t say.

Tomer Ullman, for his axiomatic and well-defined friendship, and for demonstrat-

ing that being humorous doesn’t equal being sarcastic.

Tim O’Donnell, for friendship and scholarship.

Ted Gibson and Leslie Kaelbling, for contributing their experience in computa-

tional linguistics and hierarchical planning (respectively) as part of my thesis commit-

tee, and for having reasonable expectations about my knowledge in these domains.

I am grateful to many others at CoCoSci and around MIT, for research ideas,

friendship, or (most commonly) both: David Wingate, Cameron Freer, Chris Baker,

Dan Roy, Roger Grosse, Tobias Gerstenberg, Vikash Mansinghka, Josh Hartsthorne,

Sam Gershman, Eyal Dechter, Steve Piantadosi, Yarden Katz, and Peter Battaglia.

At Stanford, I have come to know another group of people without whom this

PhD would not have been the same.

I thank Daniel Hawthorne, for his jovial nature.

Long Ouyang, for asking the tough questions.

My other friends and collaborators in CoCoLab and around Stanford: Erin Ben-

nett, Irvin Hwang, Justine Kao, Desmond Ong, Siddharth N, Michael-Henry Tessler,

Thomas Icard, Daniel Selsam, Judith Degen, Daniel Ritchie, Greg Scontras, Daniel

Ly, William Leif Hamilton, Jacob Steinhardt, Yoni Donner, and Ling Yang.

Many others have taught me over the years. I thank Jürgen Schmidhuber, Alexan-

der Förster, and Tom Schaul, for welcoming me at IDSIA when I knew nothing. Nick

Bostrom and Daniel Dewey, for welcoming me at FHI when they knew nothing about

me. Moshe Looks and Nick Hay, for a fun summer at Google. Vladimir Nesov, for

teaching me the importance of evaluating arguments independent of their conclu-

6

sions. And Paul Christiano, for demonstrating what it means to take “doing good”

seriously, and how to actually sit down and think.

Essentially all writing in this thesis is based on published work, which would

not exist if not for my collaborators. Besides Noah Goodman, who has guided the

research behind all chapters, including Chapter 2 [83], my collaborators for Chapter

3 have been Josh Tenenbaum and Irvin Hwang [39, 84], Tim O’Donnell and Dan Roy

for early stage work on the ideas that led to Chapter 5 [82], Jessica Taylor for Chapter

6 [85], and Robert Hawkins and Siddharth N for Chapter 7 [86]. The introduction

and conclusion make use of bits and pieces from each of these publications.

Finally, I thank Sha, for being my companion.

And my family, for everything.

7

8

Contents

1 Introduction 17

2 Background: Probabilistic Programming 29

I Representations 37

3 Concept Learning as Program Induction 39

3.1 Introduction . 39

3.2 Formal framework . 42

3.2.1 Concept representation . 42

3.2.2 Categorization . 45

3.3 Experiment . 48

3.3.1 Setup . 48

3.3.2 Results . 52

3.4 Learning, revisited . 56

3.4.1 Bayesian model merging . 57

3.4.2 Bayesian program merging . 58

3.5 Conclusion . 60

9

4 Reasoning about Reasoning as Nested Conditioning 65

4.1 Introduction . 65

4.2 Modeling theory of mind as nested conditioning 67

4.3 Schelling coordination games . 68

4.4 Language understanding . 71

4.5 Game playing . 75

4.6 Induction puzzles . 77

4.7 Discussion . 82

4.8 Conclusion . 83

II Algorithms 85

5 Dynamic Programming for Probabilistic Programs 87

5.1 Introduction . 87

5.2 Inference as marginalization . 89

5.3 Multiply-intractable distributions . 90

5.4 A Dynamic Programming algorithm 94

5.4.1 Approach . 95

5.4.2 Algorithm . 99

5.4.3 Technical ingredients . 104

5.5 Empirical evaluation . 105

5.6 Related work . 112

5.7 Conclusion . 114

6 Learning Stochastic Inverses 117

6.1 Introduction . 117

6.2 Inverse factorizations . 120

10

6.3 Learning stochastic inverses . 121

6.4 Inverse MCMC . 124

6.5 Experiments . 127

6.6 Related work . 131

6.7 Conclusion . 134

7 Coarse-to-Fine Sequential Monte Carlo 135

7.1 Introduction . 135

7.2 Background . 138

7.2.1 Probabilistic programming in WebPPL 138

7.2.2 Sequential Monte Carlo . 140

7.3 Algorithm . 141

7.3.1 Heuristic factors . 143

7.3.2 Prerequisites . 144

7.3.3 Model transform . 145

7.3.4 Lifting constants . 146

7.3.5 Lifting random variables . 147

7.3.6 Lifting factors . 148

7.3.7 Lifting primitive functions . 149

7.4 Empirical evaluation . 150

7.4.1 Markov Random Fields . 152

7.4.2 Factorial HMM . 156

7.4.3 Visual scene understanding 158

7.5 Discussion . 159

8 The Road Ahead 161

11

12

List of Figures

2-1 A Binomial(5, .5) distribution. 31

2-2 A simple scenario that requires reasoning under uncertainty 32

2-3 The conditioning operator query, defined as a Church function 33

2-4 A hierarchical model of urn draws in Church 35

2-5 Predictions for the urn model in Figure 2-4 36

3-1 Observations generated by a simple structured generative process . . 41

3-2 Human, tree exemplar, and generative model responses 53

3-3 Program induction example: flower 62

3-4 Program induction example: simple recursion 62

3-5 Program induction example: vine . 63

3-6 Program induction example: tree . 63

4-1 A Schelling coordination game in Church 68

4-2 Schelling game behavior as a function of reasoning depth 69

4-3 Language understanding as recursively nested conditioning 71

4-4 Predictions for the language understanding model in Figure 4-3 . . . 72

4-5 Tic-tac-toe in Church . 74

4-6 Predictions for the Tic-tac-toe model in Figure 4-5 75

4-7 A stochastic version of the Blue-Eyed Islanders puzzle in Church . . . 78

13

4-8 Predictions for the Blue-Eyed Islanders model in Figure 4-7 79

5-1 A simple recursive probabilistic program 89

5-2 A simple program with nested conditioning 91

5-3 Application of Dynamic Programming to a Church program 98

5-4 Church model for the rope-pulling game 108

5-5 Convergence of inference for the rope-pulling game 109

5-6 DP inference time as a function of nested conditioning depth 111

5-7 DP results for the Blue-Eyed Islanders puzzle 112

6-1 Brightness constancy Bayes net and inverse Bayes net 119

6-2 Schema of the Bayes net used in the first Inverses experiment 129

6-3 The effect of training on approximate posterior samples 130

6-4 Learning an inverse for the brightness constancy model 130

6-5 Error and acceptance rate as a function of training samples 131

6-6 Error and acceptance rate as a function of tasks 132

6-7 Effect of source of training samples 132

6-8 Results for UAI inference competition Bayes nets 133

6-9 Estimating inverses using logistic regression 133

7-1 Incremental coarsening reduces surprise in SMC 136

7-2 Heuristic factors . 140

7-3 A coarse-to-fine model . 142

7-4 Quantitative inference results for Markov Random Field models . . . 151

7-5 Coarsening the Ising model at the critical state 152

7-6 Inference results for a factorial HMM 156

7-7 Inference results for a simple scene understanding model 158

14

List of Tables

3.1 Concept types: prototypes, nested prototypes, parts 50

3.2 Concept types: parameterized parts, recursion 51

3.3 Human-model correlations for the concept-learning experiment 53

3.4 Generalization behavior in the concept-learning experiment 54

15

16

Chapter 1

Introduction

The world has changed since the rise of civilization some 10,000 years ago. Look

around—what do you see? You may be sitting on a chair, in front of a computer, a

glass of water next to it on the table, within the walls of a house, the neighbor’s dog

barking outside, cars driving by on asphalt roads built next to power lines supplying

electricity for the local school or hospital. Almost every part of your environment

has been shaped by humans; it is there because we intend for it to be there, or at

least approve of its existence.

This has arguably been a change for the better—as indicated by the existence of

the notion of progress—even if not without exceptions, and not without contention.

Basic human needs such as food, shelter, health, and physical safety are provided

to a degree far beyond hunter-gatherer times. What is responsible for this change?

While it may be difficult to pin down the relative contributions of different causes

and enabling factors, it is safe to say that our capability for thought was a necessary

ingredient. Let me explain.

Many things can be discovered by trial and error. For example, it is easy to

17

imagine that you might discover by accident that nuts can be cracked by hitting

them with large rocks, revealing their tasty kernel. Even complex outcomes can be

reached by trial and error if there is a local feedback signal that helps select future

trials. Most notably, evolution has produced organisms of astonishing complexity by

accumulating incremental changes over time, each the result of blind trial and error

in an environment that systematically favored some types of changes over others.

However, certain outcomes are beyond the reach of blind trial and error, or at

least would require trial and error on evolutionary timescales.1 Consider what it

takes to be a successful farmer in a dry region. Over the course of many months,

you water fields and gain little. It is only at the end of the season that you (quite

literally) reap the harvest of your hard work. And some strategies you might use

to be successful, such as crop rotation, take even longer to pay off. In general, if

you need to get 𝑛 successive steps right to accomplish a goal, and if you have 𝑘

choices at each step and no local signal that indicates whether you are on the right

track, your chance of success is 1/𝑘𝑛, a chance that rapidly shrinks as 𝑛 and 𝑘 grow.

Not to mention the fact that trying some things might kill you! Now consider the

construction of most of the artifacts and systems that form the backdrop against

which we live our lives, and it is clear that they involved getting many sequential

steps right. Imagine constructing a power plant by blind trial and error! How, then,

did they come to exist in such a short period of time?

The first key insight is that you don’t always need to try things in the real world.

If you can build a simulation that captures the relevant aspects of the world, you

can try things in this simulation and observe what their effects would have been, had

you tried the same thing in the real world. (The simulations we are most interested

1Humans evolved, after all, so in some sense all our accomplishments are the result of the blind
trial-and-error process of evolution.

18

in are, of course, instantiated in our minds.) This can be much quicker and much

less costly than executing trial and error in the real world. Not everything matters

equally, and so simulations can have many fewer components than the real thing.

Furthermore, it is preferable to die or suffer in a simulation than to experience the

real-world equivalent. Such simulations require a representation of some parts of the

external world; a mental representation. We will also refer to such representations

and their component parts as models and concepts, and to the idea of modeling only

certain features of the world as abstraction.

However, mental simulation has its limits. As we consider outcomes that require

longer plans, and plans that require us to choose between more options at each step,

the probability of succeeding by blind trial and error shrinks exponentially. If a plan

has 10 steps, and 10 different things you could do at each step, there are 10 billion

things to try; and in the real world, the number of meaningfully distinct things one

could do at each point in time is likely much larger than 10, depending on the grain

of analysis.

The second key insight is that we can manipulate mental representations in ways

that don’t apply to the world itself. We don’t need to randomly try sequences of

actions until we succeed. Instead, we can—for example—reason backwards from a

goal until we find a sequence of steps that starts from our current situation. More

generally, we can apply conditional reasoning: suppose that some fact is true in

our simulation, then what follows? If the simulation is accurate with respect to the

relevant factors, and our reasoning methods are truth-preserving, our conclusions

will be accurate as well. We will refer to this kind of reasoning as inference, and

it applies in many settings, not just goal-directed reasoning. In fact, even learning

what simulation best captures the world (based on what we have observed) can be

seen as a kind of inference.

19

These two concepts—mental representation and inference—are key ingredients

for our ability to shape the world, and they form the heart of this thesis. At the

beginning of this introduction, we have seen some of the impacts we have had on our

environment, and some of the ways in which we have made it more humane, thanks

to our planning and reasoning abilities (among other contributors). However, much

remains to be done. Even today, disease, war, and poverty are serious problems, and

the list of problems that are somewhat less serious, but still of great importance,

is too long to put into words. We would like to build machines that can help us

accomplish the non-trivial tasks required to fix these problems—tasks that involve

modeling the world and making choices that steer it into very particular directions

that we would never encounter by blind trial and error.

There are different ways to go about this. One could start from scratch, or

one could try to understand and reproduce the architecture of the human mind

at various levels of fidelity. There are arguments either way, and both approaches

should be pursued. In this thesis, I pursue an approach based on understanding

human thought and building machines that think “like humans” in relevant ways

(which I will elaborate on shortly).

I follow this approach for three reasons, two common and one less common.

First, following the template provided by the human mind might be easier. Second,

we would like to understand how the human mind works for independent reasons,

such as improving education, curing mental illness, and augmenting human intellect,

and building a mind is a great tool for understanding it. In Richard Feynman’s

words, “What I cannot create, I do not understand”. Third, we might be able build

more useful machines this way. This reason is usually less emphasized, but perhaps

more important in the long run. Whenever we pose a task, be it to a human or a

machine, we have to specify it in some form. For example, we can give a recipe for the

20

individual steps involved in the task, describe the desired outcome, or give examples

of correct and incorrect behavior. The correct interpretation of such instructions

relies on shared background knowledge. To follow a recipe for making poached eggs,

you need to know what the words “saucepan”, “teaspoon”, and “yolk” refer to. To

learn how to drive well from examples of good and bad driving, you need to generalize

in ways similar to how a human would. As we build machines that act with greater

autonomy and that take on more ambitious tasks, there is more opportunity for

differences in background knowledge and generalization patterns to hamper reliable

delegation to machines. It is at least plausible that this can be ameliorated by

building machines with mental representations that mirror human knowledge, and

with mechanisms for acquiring knowledge that mirror human learning.

Once we have decided to take a path based on understanding human cognition, a

second decision point is the level of abstraction to use for thinking about the mind.

Since Marr [54], this is commonly viewed as a choice between the computational level,

the algorithmic level, and the level of implementation. A computational-level analysis

of human cognition is primarily concerned with reverse-engineering the problems

that human cognition solves, and the broad approaches it takes to solve them. An

algorithmic-level analysis seeks to understand the processes and algorithms that are

used to solve the problems defined on the computational level. Finally, an analysis on

the level of implementation is concerned with the physical (and specifically neural)

implementation of those algorithms. We are primarily interested in building machines

that can solve the same problems that human cognition is solving, and in ways that

are broadly compatible with how humans are solving them, so we will focus on the

computational level and (to a lesser extent, and only in some parts of our discussion

on inference methods) on the algorithmic level. Since this approach ignores many of

the specific constraints that contributed to the architecture of the human brain, the

21

insights derived may more naturally apply to systems that are much simpler and less

sophisticated than humans, and also eventually to systems that are more complex.

What are the phenomena that we would like to understand on a computational

and (to some extent) on an algorithmic level? Based on our previous discussion, the

human ability to mentally represent the world and to manipulate this representation

are plausibly central to many of our accomplishments. Hence, the key questions

that this thesis seeks to address are: First, what are these mental representations

like? Second, based on our answer to this question, what are suitable algorithms for

manipulating these representations? There is a long history of prior work on both

of these questions. In the next few paragraphs, I will not review this work. Instead,

I will outline the most productive metaphors we currently have for understanding

mental representations and algorithms that operate on mental representations, and

postpone a more in-depth discussion of related work to subsequent chapters.

First, and perhaps most strikingly, mental representations are compositional. If

you can imagine an elephant and a piano, you will have little difficulty imagining an

elephant playing a piano, even if you have never seen such a thing. This composition-

ality reminds of the compositionality of natural language: indeed, in the previous

sentence, I used compositional language to argue that our conceptual representa-

tions are similarly compositional. This similarity is responsible for the metaphor

of a language of thought [15]. As a metaphor, natural language is difficult to use,

since language itself is not fully understood, and any account of language is likely

intertwined with an account of thought. However, compositionality is not restricted

to natural language. We have artificial languages that are still compositional. Two

prominent candidates are the languages of logic (and mathematics more generally),

and programming languages. Of these, programming languages tend to be more pro-

cedural (describing processes), whereas logical languages tend to be more declarative

22

(describing state).

Second, mental representations are graded in the sense that they can capture

uncertainty. If I tell you that my flight was delayed, you may not know how much of

a delay I am talking about, but you do have a sense for what is likely and unlikely:

it is probably more than a few seconds, probably less than a few days, and most

likely somewhere between 15 minutes and a few hours. This gradedness in our

thinking has been recognized for a long time, e.g. in prototype and exemplar models

of concept learning [3, 78], which we will encounter again in Chapter 3. Uncertainty

is commonly formalized in the setting of probability theory, where probabilities can

be viewed as degrees of belief, and everything that follows will be informed by this

Bayesian perspective [40].

Together, these two considerations—compositionality and uncertainty—suggest

that formal languages that can express probability distributions may provide a rich

substrate for understanding mental representation, and algorithms that operate on

expressions in such languages may help us understand how we manipulate mental rep-

resentations. If we look at our best metaphors for understanding mental operations,

this hunch is confirmed and clarified. We liken thinking to how digital computers

perform calculations on representations of numbers, and we believe that, although

thinking is a biological process, it “has more in common with multiplication or sort-

ing a list of numbers than with digestion or mitosis” [50]; we have invented logical

inference to reflect the kind of thinking that mathematicians do, and we talk about

searching for an answer; we perform statistical inference as a means of automating

thinking about whether certain observed differences are “significant”. Jaynes’ work

on probabilistic inference is explicitly motivated by the study of common sense, and

by the automation of plausible reasoning based on incomplete information [40].

Based on these considerations, this thesis explores probabilistic programs as a

23

framework for studying human thought. In the next chapter, I will explain what

probabilistic programs are in more detail. For now, a probabilistic program is a

program that defines a probability distribution, usually by including random choices,

and that supports probabilistic inference. The central thesis of this dissertation is

that probabilistic programs are a productive metaphor for understanding

how the mind works. They are a metaphor in that the representations that

the brain actually uses may not be programs in the strictest sense, but—as I will

argue—they share many properties with programs. This metaphor is productive

in two senses. First, it is straightforward to implement probabilistic programs and

algorithms that operate on them, which allows us to compare their predictions to

data gathered in human experiments, and to explore the behavior and efficiency of

various algorithms. Second, it is productive in the sense that the basic framework

allows us to model a broad class of phenomena that are relevant to the study of

human cognition. I will provide evidence that a research program for understanding

the mind based on probabilistic programs is productive in both of these senses by

instantiating it with respect to representations and inference.

The first half of the thesis is devoted to representations.

In Chapter 3, I explore the use of probabilistic programs in understanding hu-

man conceptual representations. Many real world concepts, such as “car”, “house”,

and “tree”, are more than simply a collection of features. These objects are richly

structured and defined in terms of systems of relations, subparts, and recursive

embeddings. I describe an approach to concept representation and learning that

attempts to capture such structured objects. This approach builds on prior prob-

abilistic approaches, viewing concepts as generative processes [14, 41, 68], and on

recent rule-based approaches, constructing concepts inductively from a language of

thought [15, 27]. Concepts are modeled as probabilistic programs that describe gen-

24

erative processes; these programs are described in a compositional language. In an

exploratory concept learning experiment, I investigate human learning from sets of

tree-like objects generated by processes that vary in their abstract structure, from

simple prototypes to complex recursions. I compare human categorization judge-

ments to predictions of the true generative process as well as a variety of exemplar-

based heuristics. Finally, I present a computational approach to inducing probabilis-

tic programs from data and show that it can learn simple programs in the domain

of little trees.

In Chapter 4, I specialize the framework developed in Chapter 3 to the domain

of social cognition, a domain that plays a particularly big role in human everyday

thinking, and that particularly benefits from the representational power of proba-

bilistic programs. A wide range of human reasoning patterns can be explained as

conditioning in probabilistic models; however, conditioning has traditionally been

viewed as an operation applied to such models, not represented in such models. I

describe how probabilistic programs can explicitly represent conditioning as part of

a model. This enables us to describe reasoning about others’ reasoning using nested

conditioning. Much of human reasoning is about the beliefs, desires, and intentions of

other people; I use probabilistic programs to formalize these inferences in a way that

captures the flexibility and inherent uncertainty of reasoning about other agents. I

express examples from game theory, artificial intelligence, and linguistics as recursive

probabilistic programs and illustrate how this representation language makes it easy

to explore new directions in each of these fields.

The second half of the thesis is devoted to algorithms.

Motivated by the models of reasoning about reasoning developed in Chapter 4,

Chapter 5 describes a Dynamic Programming algorithm for computing the marginal

distribution of discrete probabilistic programs; that is, an exact inference algorithm

25

that aggressively reuses subcomputations where possible. In technical terms, this

algorithm takes a functional interpreter for an arbitrary probabilistic programming

language and turns it into an efficient marginalizer. Because direct caching of sub-

distributions is impossible in the presence of recursion, we build a graph of dependen-

cies between sub-distributions. This factored sum-product network makes (potentially

cyclic) dependencies between subproblems explicit, and corresponds to a system of

equations for the marginal distribution. We solve these equations by fixed-point it-

eration in topological order. I illustrate this algorithm on examples used in teaching

probabilistic models, computational cognitive science research, and game theory.

Chapter 6 tackles the following puzzle: Human recognition of words, objects,

and scenes is extremely rapid, often taking only a few hundred milliseconds. By

contrast, Bayesian inference is computationally expensive, and even approximate,

sampling-based algorithms tend to take many iterations before they produce rea-

sonable answers. How can we reconcile the speed of recognition with the expense of

coherent probabilistic inference? The Dynamic Programming algorithm developed in

Chapter 5 cannot resolve this puzzle, since many models are not amenable to exact

sharing of subcomputations. Therefore, in Chapter 6, I develop a class of algorithms

for amortized inference in Bayesian networks. In this setting, we invest computation

upfront to support rapid online inference for a wide range of queries. My approach is

based on learning an inverse factorization of a model’s joint distribution: a factoriza-

tion that turns observations into root nodes. I present algorithms that accumulate

information to estimate the local conditional distributions that constitute such a fac-

torization. These stochastic inverses can be used to invert each of the computation

steps leading to an observation, sampling backwards in order to quickly find a likely

explanation. I show that estimated inverses converge asymptotically in the number

of (prior or posterior) training samples. To make use of inverses before convergence, I

26

describe the Inverse MCMC algorithm, which uses stochastic inverses to make block

proposals for a Metropolis-Hastings sampler. I explore the efficiency of this sampler

for a variety of parameter regimes and Bayes nets.

In Chapter 7, I ask what it would take to scale up the models developed in

previous chapters to large state spaces. When we as humans are faced a complex

reasoning task, it often helps to take a step back, try to understand the big picture,

and then focus on what seems most promising. In other words, we consider a very

approximate (coarse) solution to the problem first, then refine to more detailed an-

swers. I explore this idea in the setting of Sequential Monte Carlo algorithms, a class

of algorithms that is based on the idea of sampling from a sequence of distributions

that interpolate between a tractable distribution and an intractable distribution of

interest. Usually, the sequences used are simple, e.g., based on geometric averages

between distributions. When models are expressed as probabilistic programs, the

models themselves are highly structured objects that can be used to derive anneal-

ing sequences that are more sensitive to domain structure. I propose an algorithm for

transforming probabilistic programs to coarse-to-fine programs which have the same

marginal distribution as the original programs, but generate the data at increasing

levels of detail, from coarse to fine. I apply this algorithm to three models in the

domain of tracking partially observable objects over time given visual information

and show that the use of coarse-to-fine models can make existing generic inference

algorithms more efficient when abstractions match domain structure.

Finally, in Chapter 8, I review some promising next steps for the project of

understanding the human mind using probabilistic programs, with an eye towards

building useful machines.

27

28

Chapter 2

Background: Probabilistic

Programming

A probabilistic program is a program in a universal programming language with

primitives for sampling from probability distributions, such as Bernoulli, Gaussian,

and Poisson. Execution of such a program leads to a series of computations and

random choices. Probabilistic programs thus describe models of the stochastic gen-

eration of results, implying a distribution on return values. Most of our examples use

Church [26], a probabilistic programming language based on the stochastic lambda

calculus. This calculus is universal in the sense that it can be used to define any com-

putable discrete probability distribution [49] (and indeed, continuous distributions

when encoded via rational approximation).

Church is a close relative of the functional programming language Scheme [1]. In

this language, function application is written in prefix notation:

(+ 3 2) → 5

This chapter is based on Stuhlmüller and Goodman [83] and Stuhlmüller et al. [86].

29

The same applies to conditionals:

(if (> 3 2) true false) → true

Functions are first-class values and can be defined using 𝜆. For example,

(𝜆 (x) (* x 2)) → <function object>

refers to a function that doubles its argument. Values can be bound to variables

using define and, for explicit scope, with let:

(let ([y 3]) (+ y 4)) → 7

For function definitions,

(define (double x) (* x 2))

is short for:

(define double (𝜆 (x) (* x 2)))

The random primitive (flip 𝑝) samples from a Bernoulli distribution: it returns

true with probability 𝑝, false with probability 1− 𝑝. By composing random prim-

itives such as flip with deterministic computation, we can build complex distribu-

tions. For example, the expression

(sum (repeat 5 (𝜆 () (if (flip .5) 0 1))))

induces the Binomial distribution shown in Figure 2-1. The meaning of a complex

Church program can be understood via its sampling semantics : a single execution

returns a sample from the distribution defined by the program; the histogram of

(many) samples from the program defines its distribution on return values.

A Church program describes knowledge with uncertainty, and can be used to

capture many effects of reasoning under uncertainty. As an example of reasoning

under uncertainty, consider the following situation, depicted in Figure 2-2: We are

presented with three opaque urns, each of which contains some unknown number of

30

0 1 2 3 4 5

P
ro
b
a
b
il
it
y

0
.0

0
.3

Figure 2-1: A Binomial(5, .5) distribution.

red and black balls. We do not know the proportion of red balls in each urn, and

we don’t know how similar the proportions of red balls are between urns, but we

have reason to suspect that the urns could be similar, as they all were filled at the

same factory. We are asked to predict the proportion of red balls in the third urn

(1) before making any observations, (2) after observing 15 balls drawn from the first

urn, 14 of which are red, and (3) after observing in addition 15 balls drawn from the

second urn, only one of which is red.

Intuitively, observing the first 15 balls, almost all of which are red, has two

plausible explanations: either all urns have a high proportion of red balls, or all

urns have differing proportions of red balls and this particular urn happens to have

a high proportion of red balls. We don’t know which of these is right and therefore

have not learned about the overall bias of the urns yet, but we can predict a higher

proportion of red balls for urn 3. After we observe in addition 15 balls drawn from

urn 2, almost all of which are black, it becomes unlikely that all urns have similar

proportions, hence our predicted proportion of red balls for urn 3 goes down again

and we predict that the urns are biased towards very high and very low proportions

of red balls. Notice that this reasoning is non-monotonic: our degree of confidence

that “urns mostly contain red balls” goes up with the first piece of evidence, but

31

1 2 3

Condition 1

1 2 3

Condition 2

1 2 3

Condition 3

? ? ?

Figure 2-2: A simple scenario that requires reasoning under uncertainty: Drawing
balls from urns, we want to guess for each condition (1) whether and how the urns
are biased overall and (2) the likely proportion of red balls for the third urn.

decreases with the second piece.

Figure 2-4 shows how one could model this situation in Church. Figure 2-5 shows

the predictions derived from the model for conditions 1-3. In Church, conditional

distributions are defined using the query operator, which takes as arguments a list

of definitions describing a generative model, a query expression, and a condition,

and which returns a sample from the conditional distribution. This query syntax is

much like the standard mathematical notation for conditionals, 𝑃 (𝑞|𝑐), but makes the

model explicit. The predictions of the model in Figure 2-4 match the non-monotonic

intuition sketched above. More generally, a wide range of reasoning patterns are

naturally modeled as conditioning in probabilistic models, including explaining away,

screening off, and Occam’s razor [see 28].

In sharp contrast to less expressive modeling languages, and traditional statistical

notation, conditioning is not a special primitive in Church. Figure 2-3 shows how

to define a generative model that samples from a conditional distribution. The

procedure joint draws samples from a prior distribution. The predicate condition?

takes a sample and returns true if the condition of interest holds. The function

rejection-query simply keeps on drawing samples from the prior until it encounters

32

(define (rejection-query joint condition ?)
(let ([sample (joint)])

(if (condition? sample)
sample
(rejection-query joint condition ?))))

Figure 2-3: The conditioning operator query can be defined as a Church function.
It takes as arguments joint, a stochastic function without arguments that samples
from a prior distribution, and condition?, a function that checks whether a given
sample satisfies the condition of interest. It calls itself recursively until it finds a
sample that satisfies the condition, which it then returns. The query syntax used in
the remainder of the thesis—which takes as arguments a model, query expression, and
condition—can be turned into a call to rejection-query using a simple syntactic
transform.

a sample that satisfies the condition, in which case it returns the sample. The critical

difference to simpler languages is the ability to “keep sampling until”: marrying

random choice with universal computation enables stochastic recursion, which makes

it easy to define the operation of conditioning.

Of course, drawing conditional samples using rejection-query is very inefficient

when the probability of satisfying the condition is low. Programs that contain a single

level of conditioning implemented by rejection sampling already require in expecta-

tion 1/𝑝 recursive calls when we condition on an event with probability 𝑝. Since it

is common to condition on low-probability events, this is often infeasible. For this

reason, many algorithms for approximately sampling from conditional distributions

have been developed, including Markov Chain Monte Carlo (MCMC), importance

sampling, and variational methods.

However, we can distinguish model specification from the process that is actu-

ally used to infer the distribution implied by the model. From this point of view

rejection-query is an elegant definition of the distribution of interest, while the

33

implementation we use to compute this distribution remains unspecified. Thus the

practical problem of inference is the problem of efficiently computing the marginal

distribution of a probabilistic program, i.e., its distribution on return values.

This separation of inference techniques and modeling assumptions is a distin-

guishing feature of probabilistic programming as a tool for machine learning, and it

implies that any advances in algorithms provide benefits for a wide range of appli-

cations at once. Thus, while I demonstrate the inference techniques in Chapters 5-7

on small sets of models chosen for their pedagogical value, the techniques themselves

apply to a much wider range of models without modification.

34

(query

;; model
(define bias (uniform 0 10))
(define red-bias (uniform 0 bias))
(define black-bias (- bias red-bias))
(define urn- >proportion-red

(mem
(𝜆 (urn)

(beta (+ .4 red-bias) (+ .4 black-bias)))))
(define (sample-urn urn)

(if (flip (urn- >proportion-red urn)) ∙ ∙))

;; query expression
(urn- >proportion-red 3)

;; condition
(equal? (repeat 15 (𝜆 () (sample-urn 1)))

(list ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙)))

Figure 2-4: A hierarchical model of urn draws in Church. This program formalizes
reasoning about condition 2 of the urn scenario in Figure 2-2, implemented as con-
ditional sampling using the query operator. It takes as arguments a model (given as
a sequence of definitions), an expression of interest, and a condition (an expression
that evaluates to true or false). This model first samples a bias, splits the bias
into red and black, and then defines how the urns’ proportions of red balls depend
on the biases. The function urn->proportion-red is memoized such that it always
returns the same proportion when asked about the same urn. By contrast, the func-
tion sample-urn always flips a new coin to determine whether to return a red or
black ball, with the coin weighted by the given urn’s proportion of red balls. Given
this model, we sample the proportion of red balls in the third urn conditioned on
observing 1 black and 14 red draws from the first urn.

35

Inferred overall bias of the urns

P
er
ce
n
t
o
f
T
o
ta
l

0

10

20

30

40

50

0 2 4 6 8 10

Condition 1

0 2 4 6 8 10

Condition 2

0 2 4 6 8 10

Condition 3

Predicted proportion of red balls in urn 3

P
er
ce
n
t
of

T
ot
al

0

10

20

30

0.0 0.2 0.4 0.6 0.8 1.0

Condition 1

0.0 0.2 0.4 0.6 0.8 1.0

Condition 2

0.0 0.2 0.4 0.6 0.8 1.0

Condition 3

Figure 2-5: Urn scenario predictions derived from the Church model in Figure 2-4.
Before seeing any draws, the model predicts uniform uncertainty about the overall
bias, and mostly uniform uncertainty about the proportion of red balls in urn 3 (with
extreme values being a bit more likely). After seeing 15 balls drawn from urn 1, 14
of which are red, the model still cannot judge how much the urns are biased, since
it has seen only draws from a single urn. However, it would predict that, if the urns
are biased, they are biased towards red, and therefore predicts that the proportion
of red balls is likely to be high for urn 3. After seeing an additional 15 balls from
urn 2, 14 of which are black, the model predicts that it is likely that the urns do not
have directional bias, and predicts that the balls in urn 3 are most likely to be either
all red or all black, but with significant probability on other proportions, since we
have seen only two urns.

36

Part I

Representations

37

38

Chapter 3

Concept Learning as Program

Induction

3.1 Introduction

Concept learning has traditionally been studied in the context of relatively unstruc-

tured objects that can be described as collections of features. Learning and cat-

egorization can be understood formally as problems of statistical inference, and a

number of successful accounts of concept learning can be viewed in terms of proba-

bilistic models defined over different ways to represent structure in feature sets, such

as prototypes, exemplars, or logical rules [3, 27, 78]. Yet for many real world object

concepts, such as “car”, “house”, “tree, or “human body”, instances are more than

simply a collection of features. These objects are richly structured, defined in terms

of features connected in systems of relations, parts and subparts at multiple scales of

abstraction, and even recursive embedding [53]. A tree has branches coming out of

This chapter is based on Stuhlmüller et al. [84] and Hwang et al. [39].

39

a trunk, with roots in the ground; branches give rise to smaller branches, and there

are leaves at the end of the branches. A human body has a head on top of a torso;

arms and legs come out of the torso, with arms ending in hands, made of fingers. A

house is composed of walls, roofs, doors, and other parts arranged in characteristic

functional and spatial relations that are harder to verbalize but still easy to recognize

and reason about. Besides objects, examples of structured concepts can be found in

language (e.g. the mutually recursive system of phrase types in a grammar), in the

representation of events (e.g. a soccer match with its fixed subparts), and processes

(e.g. the recipe for making a pancake with steps at different levels of abstraction).

Such concepts have not been the focus of research in the probabilistic modeling

tradition. Here we describe an approach to representing structured concepts—more

typical of the complexity of real world categories—using probabilistic generative

processes. We test whether statistical inference with these generative processes can

account for how people categorize novel instances of structured concepts and compare

with more heuristic, exemplar-based approaches.

Because a structured concept like “house” has no single, simple perceptual pro-

totype that is similar to all examples, learning such a concept might seem very

difficult. However, each example of a structured concept itself has internal structure

which makes it potentially very informative. Consider Figure 1, where from only a

few observations of a concept it is easy to see the underlying structural regularity

that can be extended to new items. The regularities underlying structured concepts

can often be expressed with instructions for generating the examples: “Draw a se-

quence of brown dots, choose a branch color, and for each brown dot draw two dots

of this color branching from it.”

We build on the work of Goodman et al. [27], who introduced an approach to

concept learning as Bayesian inference over a grammatically structured hypothesis

40

Figure 3-1: Three examples of a structured concept described by a simple generative
process.

space—a “language of thought.” Single concepts expressed in this language were sim-

ple propositional rules for classifying objects, but this approach naturally extends

to richer representations, providing a concept learning theory for any representation

language. Here we consider a language for generative processes based on probabilis-

tic programs : instructions for constructing objects, which may include probabilistic

choices, thus describing distributions on objects—in our case distributions on colored

trees. Because this language describes generative processes as programs, it captures

regularities as abstract as subparts and recursion.

The theory of concept representation that we describe here shares many aspects

with previous approaches to concepts. Like prototype and mixture models [3, 30],

probabilistic programs describe distributions on observations. However, prototypes

and mixtures generate observations as noisy copies of ideal prototypes for the concept

and thus cannot capture more abstract structures such as recursion. Like rule-based

models of concept learning, our approach supports compositionality: complex con-

cepts are composed out of simple ones—but rather than deterministic rules, our

concepts denote distributions. Finally, the probabilistic program approach can be

seen as a generalization of previous approaches to generative representations of con-

cepts [14, 41, 68].

41

We investigate human learning for classes of generating processes that vary in

their abstract structure, from simple prototypes to complex multiply recursive pro-

grams. We compare predictions for categorization judgments based on the true

generative model to the predictions of exemplar models, which exploit the relational

structure of the examples to varying degrees but cannot detect more abstract struc-

ture. We find two regimes: for concepts with simple prototype-like structures, human

judgments are well described by a relational exemplar model, but humans can also

easily learn more abstract regularities—such as sub-concepts and recursion—which

are better captured by a model using more expressive generative descriptions based

on probabilistic programs.

3.2 Formal framework

In the following, we first explain the formal language we use to describe generative

processes, then the different methods of categorization (or generalization) we compare

to subjects’ judgments.

3.2.1 Concept representation

We analyze concepts as generative models, i.e. as formal descriptions of processes

that generate observations. We do so within a simple domain where we can fully

know and manipulate the actual generating processes behind complex objects. We

use tree-structured graphs with colored nodes as observations in our experiments—

these are a simple proxy for many real-world concepts, where the dependencies among

parts are hierarchical or tree-like. Human bodies, buildings, and events all consist of

parts that themselves contain parts, with each part standing in interesting relation

42

to the others.

We represent these trees as nested lists: each list denotes a tree, with the first

element in the list specifying the color of the root node and the remaining elements

describing the children of this node, each child itself being a list (tree). For example,

the second tree shown in Figure 1 can be represented as (́• (•) (• (•) (•)) (•)).

We formalize the processes that generate these observations using a subset of

Church, a Lisp-like stochastic programming language1 [26]. Programs in Church de-

scribe processes that produce values; running a program corresponds to generating

a value from such a process. Because Church contains primitive functions that ran-

domly choose from a distribution on values (e.g. the function flip that randomly

chooses true or false), Church programs describe stochastic processes. The mean-

ing of a Church program is a distribution on return values—which may be complex

values such as nested lists—and any given execution results in a sample from this

distribution. In what follows we describe Church programs which sample colored

trees.

We group generative models into classes by the abstract constructions they use.

Table 3.1 illustrates each of these types using a single concept program and ob-

servations drawn from this program. The simplest tree-generating processes in our

language use only the stochastic function node, which takes as its first argument a

color symbol and as its remaining arguments subtrees. With high probability, node

returns a tree that has the given color symbol at its root and the given subtrees as its

children, but with some probability 𝜖, it switches to a noise process that can return

any tree, that is, node introduces a random noise process into the tree construc-

1Church uses prefix notation, i.e. function application is written with the operator first, the
operands following. For example, (node x y) means that the function node is called with the
arguments x and y.

43

tion. Under the noise process, the number of children for a node is sampled from a

geometric distribution with parameter 𝜖 and the node color is sampled uniformly.

Programs like (node • (node •) (node •)) denote stochastic prototypes. They

are most likely to generate the tree that corresponds to the given colors, in this

case (́• (•) (•)), but they can return any tree with a certain probability. The more

a tree deviates from the prototype, the less likely this process is to generate it. For

example, the simple program described above could switch at the third node to the

noise process and produce (́• (•) (• (•))) instead of the prototype. By introducing

the noise process, node turns a deterministic prototype into a stochastic process.

All of the more abstract ways of formalizing generative models in our tree do-

main compose these basic processes. Nested prototypes formalize the intuition that

a concept or a part of a concept can be “either this or that”. Running the program

(if (flip .5) (node •) (node •)) will flip a fair coin and return a sample from (node

•) with probability .5, otherwise a sample from (node •).

One of the central reasons for analyzing concepts as represented in a language of

thought is that they compose analogously to the components of natural and artificial

languages—parts similarly allow composition through reuse in our domain. A part

concept is defined first and can then be used in arbitrarily many places within other

concepts. For example, the program (define (part) (node • (node •))) names a

simple part consisting of only two nodes. This part can now be reused in other

concepts. For example, the most likely return value for (node • (part) (part))

is (́• (• (•)) (• (•))). When parts are defined, they are available to the noise

process. This leads to some invariance to the position of parts and captures the

idea that a generating process may give rise to observations that contain a part in

a different place, although with lower probability compared to an observation with

the part in the correct place.

44

Parameterized parts can capture both deterministic structure and random choices

and reuse them in multiple places. When a part like (define (part x) (node • x x))

is used, for example in the program (part (node •)), it evaluates the body of the

part—here (node • x x)—with x assigned to its argument, here (node •). Evaluat-

ing the program (part (node •)) is therefore most likely to result in the observa-

tion (́• (•) (•)).

Allowing parts to call themselves introduces recursion, a means to capture a large

amount of repetitive observed structure in a single short definition. For example, the

part (define (p) (if (flip) (node •) (node • (p)))) can generate arbitrarily deep

lists of single blue nodes, with shorter ones being more likely. The power of these

program constructs is that they can be used compositionally to build more complex

concepts, such as those shown in Table 3.1 and 3.2.

3.2.2 Categorization

In order to model generalization and categorization behavior of human subjects, we

need not only a way to represent concepts, but also a way to compute the probability

of any given observation belonging to a known concept. We analyze our experimental

results using four models that differ in how much they make use of representational

structure.

On the unstructured end of the scale, we use a model that computes generalization

judgments solely by comparing the fraction of nodes that have a given color. On the

other end of the scale, a generative Bayesian model uses the likelihood under the

true generative process to judge category membership. In between, an exemplar

model makes use of tree structure in the observations, but not of the more abstract

generative process that led to the observations.

45

Generative Model

In modeling concept learning as Bayesian program induction, we follow the approach

taken by Goodman et al. [27]. Since we formalize concepts as probabilistic programs,

the likelihood 𝑃 (𝑂|𝐶) of an observation 𝑂 under a given concept 𝐶 corresponds to

the probability of the program making its random choices such that it returns the

observation as its value (see Goodman et al. [26]). The posterior probability of a

concept 𝐶 given observations 𝑂 is proportional to this likelihood multiplied by the

prior:

𝑃 (𝐶|𝑂) ∝ 𝑃 (𝑂|𝐶)𝑃 (𝐶) (3.1)

In the last section, we described a language for programs which generate trees; a

prior 𝑃 (𝐶) could be derived from this language, as in Goodman et al. [27]. An ideal

learner would then infer the posterior distribution 𝑃 (C|𝑂) over concepts C given

the observation 𝑂 and make predictions about whether a new observation 𝑡 belongs

to the category of the observed objects using each concept 𝐶 ∈ C in proportion to

its posterior probability:

𝑃 (𝑡|𝑂) ∝
∑︁
𝐶

𝑃 (𝑡|𝐶)𝑃 (𝐶|𝑂) (3.2)

In order to make computational modeling tractable, we make the simplifying as-

sumptions that (1) subjects’ reasoning is dominated by the maximum a posteriori

(MAP) estimate of this distribution, i.e. by the single concept that has the highest

posterior probability and that (2) the true generating concept 𝐶𝑡𝑟𝑢𝑒 is a good approx-

imation to the MAP estimate. Thus, for each of the concept types we investigate,

we model subjects’ behavior using the program from which the training data was

sampled. The likelihood of a new observation 𝑡 belonging to this concept is simply

46

𝑃 (𝑡|𝐶𝑡𝑟𝑢𝑒) which we estimate using an adaptive importance sampling algorithm.

We do not claim that subjects necessarily identify the true generating concept

from a few examples; this approximation is made for computational tractability. The

full Bayesian model, which maintains uncertainty over generating concepts, can make

different predictions in certain cases, but it is not clear whether this represents a bias

for or against the approximation—to the extent that people remain uncertain of the

concept after a few examples, the Bayesian model would capture human inferences

better than our approximation.

Tree Exemplar Model

This and the next two models are versions of the exemplar-based generalized context

model (GCM) [62]. For observations 𝑂1, . . . , 𝑂𝑛 from category 𝐶 and a new obser-

vation 𝑡 for which we would like to estimate the likelihood under category 𝐶, we

use 𝑃 (𝑡 ∈ 𝐶|𝑂1, . . . , 𝑂𝑛 ∈ 𝐶) ∝ 1
𝑛

∑︀𝑛
𝑖=1 𝑒

−𝑑(𝑂𝑖,𝑡) where 𝑑 is a distance measure that

is sensitive to the tree structure of the observations. Starting from the root node,

this measure matches the trees as much as possible, incrementing by 1 for each node

that differs in color between the two trees and for each node that must be generated

because it exists in one tree but not in the other tree. This approach is similar to

the structure mapping approach used by Tomlinson and Love [93].

Frequency-based Exemplar Models

As in the tree exemplar model, we use a distance measure 𝑑 to estimate the likelihood

of an observation belonging to a category for which we have only positive examples.

In this version of the model, 𝑑(𝑡1, 𝑡2) is the RMSE between the transition count

vectors of 𝑡1 and 𝑡2. For each pair of node colors, the transition count vector contains

47

the number of times this pair occurs adjacent (as parent-child) in the given tree. We

call this model Transition GCM. We also investigate a simplified version that uses

the distance between the color count vectors. The length of this vector corresponds

to the number of possible node colors, with each entry in the vector denoting how

often this node color appears in the tree of interest. We call this Set GCM.

3.3 Experiment

This experiment is an exploratory investigation into generalization from observa-

tions of structured objects. Since our main goal in this study is to investigate the

representation of concepts and their use for categorization and generalization rather

than the memory aspects of learning, we use a paradigm that minimizes memory

demands. By doing so, we hope to focus on how people represent the commonal-

ities between observed instances of a concept and how they use this knowledge to

generalize to new instances. We chose a domain that both contains observations

with simple structure and allows for interesting generative processes—the domain of

colored trees generated by probabilistic programs.

3.3.1 Setup

Participants

250 members of Amazon’s crowdsourcing service Mechanical Turk took part in the

online experiment. Subjects were compensated for participation.

48

Stimuli

Subjects were told that they are looking at newly discovered kinds of plants that

grow in extreme environments. Each subject saw 18 pages, with each page consist-

ing of 15 training examples, a control question, and a test example together with a

classification question. Both training and test examples were images of simple trees

with colored nodes drawn from tree-generating programs (see e.g. Table 3.4). For

each of the concept types shown in Table 3.1, there were three tree-generating pro-

grams, and for each program there were seven test examples. These test examples

were chosen to cover a wide range of both intuitive and model judgments of category

membership. Both training example order and stimuli colors were randomized.

Procedure

In order to ensure that subjects process the training stimuli, a control question on

each page asked how many of the training trees consist of more than 7 dots. 55

subjects answered less than 13 out of the 18 control questions correctly within an

error margin of 2. We did not include these subjects in the analysis.

The categorization question asked: “How likely is it that the following plant is

the same kind of plant as the plants above?” Subjects chose on a seven-step scale

ranging from “certainly the same kind” to “certainly not the same kind”. For each

subject, the responses were normalized to [0, 1].

49

Prototype Nested Prototype Parts

(node •
(node •

(node •
(node •)
(node •))))

(node •
(node •

(node •
(if (flip .5)

(node •
(node •)
(node •

(node •
(node •))

(node •)))
(node •

(node •)
(node •

(node •))
(node •))))))

(define (part)
(node •

(node •
(node •))))

(node •
(part)
(node •

(node •
(part))

(part)))

Table 3.1: This table illustrates the concept types that can be represented within
our language for generative models. For each type, an example of a concept (a
stochastic program) is shown together with observations drawn from this program.
The stochastic function node generates a mixture of the subtrees that are passed to it
as its arguments and a noise process that, with low probability, can generate any tree.
The abstraction methods stochastic branching, (parameterized) parts and recursion
compose these stochastic prototypes into more structured generative processes.

50

Parameterized Parts Single Recursion Multiple Recursion

(define (part x)
(node •

x
(node •

x
(node •

x
(node • x x)
x)

x)
x))

(part
(if (flip .5)

(node •)
(node •)))

(define (part)
(node •

(if (flip .5)
(node •

(part)
(node •))

(node •))))

(node •
(node •

(node •)
(node •))

(part))

(define (part)
(node •

(if (flip .3)
(part)
(node •))

(if (flip .3)
(part)
(node •))))

(node •
(node •

(node •
(part)))

(part))

Table 3.2: Table 3.1, continued.

51

3.3.2 Results

Table 3.3 summarizes the correlation results for all models. Figure 3-2 shows for each

concept type human results and model results for both the exemplar and generative

model. For each concept type, three different concepts were part of the experiment,

and for each concept, seven different test observations were shown. A single point in

the scatterplot contains information on the mean subject response for a single test

tree and the model prediction for this tree.

Neither of the two exemplar models based on simple statistics was the best pre-

dictor for any of the concept types, with the transition-based exemplar model per-

forming strictly better than the set-based model. An effect that is not accounted for

by the less structural exemplar models is illustrated by the nested prototype exam-

ple in Table 3.4: Subjects generalize significantly more to examples with branches

they have seen before than to examples that have a mixture of two known branches.

Likewise, subjects seem to generalize significantly more to trees with known branches

than to trees that have new branches with similar surface statistics. Both results are

expected under the two models that make use of tree structure.

If we group prototype and nested prototype as “less structured” and subconcepts

with and without arguments, single recursions, and multiple recursions as “more

structured”, then the tree exemplar model best predicts human responses for the less

structured stimuli whereas the true generative model best predicts performance for

the more structured stimuli.

Our generative model makes the simplifying assumption that the learner infers

a single generating concept from the examples whereas one interpretation of the

tree exemplar model is that it uses each of the training examples as a hypothesis

on what the true concept looks like. A fully Bayesian learner, which maintains a

52

Set GCM Transition
GCM

Tree GCM Generative
Model

Prototype 0.589 0.751 0.803 0.748
Nested Prototype 0.544 0.851 0.937 0.904
Parts* 0.320 0.617 0.705 0.835
Parameterized Parts 0.298 0.591 0.778 0.911
Single Recursion 0.284 0.499 0.637 0.773
Multiple Recursion 0.505 0.561 0.451 0.770

Table 3.3: Human-model correlations for the experiment. Each row shows how well
the different models predicted subjects’ performance for a particular concept type.
*Correlations excluding isolated part cases (see text).

●
●

●
●

●

●

●

0.0 0.4 0.8

−8
−4

Prototype

Human Judgement

G
C

M
 L

og
 S

co
re

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

0.0 0.4 0.8

−8
−4

Nested Prototypes

Human Judgement

●
●

●

●

●
●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

0.0 0.4 0.8

−1
4

−8
−4

Parts

Human Judgement

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

0.0 0.4 0.8

−1
4

−8
−2

Parameterized Parts

Human Judgement

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

0.0 0.4 0.8

−1
5

−5

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

0.0 0.4 0.8

−3
0

−1
5

●

●
●

●

●

●●

●●

●

● ●

●

●

●
●

●

●

●

●

●

0.0 0.4 0.8

−5
0

−3
0

−1
0

G
en

er
at

ive
 L

og
 S

co
re

●

●

●

●
●

●
●

●●

●●
●

●

●

●

●

●●●

●

●

0.0 0.4 0.8

−5
0

−2
0

0

●

●

●

●

● ●

●●

●
●

●

●

●●

●●

●

●

●

●

●

●

0.0 0.4 0.8

−7
0

−4
0

−1
0

●●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

● ●

0.0 0.4 0.8

−6
0

−3
0

0 ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

0.0 0.4 0.8

−7
0

−4
0

−1
0

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

0.0 0.4 0.8

−1
00

−4
0

0 ●

●

●

●

●

●●
●●

●

●

●
●

●

Single recursion Multiple Recursion

Figure 3-2: Comparison between human and model responses across concept types
for tree exemplar and generative model. For each of the six concept types, three
examples were shown; the color of the dots indicates to which example any given
datapoint belongs. Empty circles denote isolated part cases that were excluded from
the correlation analysis.

53

Nested
Prototypes

Parts Parameterized
Parts

Single
Recursion

Multiple
Recursion

Tr
ai

ni
ng

.

Te
st

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

**

**

Table 3.4: This table illustrates a small selection of our experimental results. For
five different concept types, training observations from a single concept of this type
are shown together with subjects’ generalizations for particularly interesting test
examples. The error bars are standard errors of the mean.

54

distribution over generative processes, may predict human behavior in ways similar

to the tree exemplar model for less structured examples and similar to the true

generating process model for the more structured examples.

Having seen how different models predict human judgments for different concept

types, we will now look at individual response patterns in order to determine ways

in which both of the two structural models can be improved.

The part example in Table 3.4 shows how changes to the location of a part

can have significantly different effects depending on whether the overall concept is

preserved (resulting in high generalization) or whether the part is moved into a

completely different environment (resulting in low generalization). By analogy, a

Picasso face, with eyes in odd places, is still more of a face than an eye alone. Parts

seen out of context constitute a problem for all models (except for the simplest set-

based one): subjects judged these isolated parts as unlikely to come from the concept

that included them as subparts whereas the models did give a high score to these

examples. Since including these outliers dramatically changed the scores and made

the interpretation of the model comparison difficult, we excluded these datapoints

from the analysis in Table 3.3. Without correction, the model-human correlations

for the part concepts are: 0.403 for the set-based exemplar model, 0.505 for the

transition exemplar model, 0.512 for the tree-based exemplar model, and 0.543 for

the generative model (note that rank-order among the models does not change as a

result of excluding these datapoints).

For the parameterized part example in Table 3.4, changing the argument uni-

formly, i.e. in all places where it occurs, leads to consistently higher scores than

changing the argument differently in different places; however, this difference is not

significant. This difference is expected if subjects inferred the true generative model,

since changes to the argument require only one use of the noise process, whereas

55

nonuniform changes require many different nodes to be generated by the noise pro-

cess. Future research needs to determine whether this effect is real, perhaps by

manipulating the diversity of parameter arguments in the observations.

For the single recursion example in Table 3.4, changing the color of a few nodes

within the recursion results in a significantly lower generalization. At the same

time, a very similar manipulation does not result in a significant change in the

generalization rating for the multiple recursion example. Intuitively, we sometimes

see a change as destroying a very obvious pattern structure whereas at other times,

the change in structure is not assumed to be relevant. Future research needs to

characterize when subjects infer that such a pattern exists, and when they instead

assume coincidence.

The comparison between the frequency based exemplar models and the two mod-

els that rely on tree structure in the observations makes clear that subjects do make

use of the fact that the observations are structured in their generalization judgments.

Furthermore, comparing the tree exemplar model to the true generative model that

makes use of more abstract structure hints at the possibility that subjects are rely-

ing on recursive structure in the observations. The individual response patterns in

the results of our exploratory experiment highlight ways in which both the exemplar-

based model and the generative model can be improved to more closely reflect human

generalization patterns.

3.4 Learning, revisited

In Section 3.2.2, we made the simplifying assumption that human learners recover the

true generating concept. This was due to computational constraints: it is challenging

to perform Bayesian inference over a hypothesis space that encompasses arbitrary

56

probabilistic programs. What if we actually want to learn generative concepts from

data? In the following, we outline a computational approach to inducing proba-

bilistic programs from data, and show anecdotal evidence that it can learn simple

programs in the domain of little trees. For a more technical in-depth description of

this approach, see Hwang et al. [39].

3.4.1 Bayesian model merging

We build on Bayesian model merging [81], a framework for searching the space of

generative models in order to find a model that explains the observed data well.

This search proceeds by applying a series of “merge” transformations to an initial

model. These transformations are selected to maximize the posterior probability

𝑃 (𝑀 |𝐷) ∝ 𝑃 (𝐷|𝑀)𝑃 (𝑀) of the model 𝑀 given data 𝐷. This process is initialized

with a model that assigns high likelihood 𝑃 (𝐷|𝑀) to the data, but has a low prior

𝑃 (𝑀) due to its complexity (“data incorporation”). For instance, when this process

is used to learn grammars from data (as in [81]), an initial grammar is constructed

by extending a working grammar with ad-hoc rules that generate the data, but that

usually lead to bad generalization performance. The transformations define a space

of simplified grammars, each of which is reachable by applying some sequence of

transformations. Bayesian model merging explores this space using beam search,

with the posterior probability 𝑃 (𝑀 |𝐷) as the search objective. This procedure

gradually simplifies this grammar so that it exhibits lower complexity and better

generalization, at the cost of assigning somewhat lower probability to the observed

data.

57

3.4.2 Bayesian program merging

When models are expressed as probabilistic programs, the search strategy (beam

search) can remain the same as in Bayesian model merging; however, we need to

adapt data incorporation strategy, search moves, and how we estimate the search

objective, 𝑃 (𝑀 |𝐷).

Our data are little trees, which can be represented as nested lists. Each tree

consists of nodes, and each node has a size and color attribute, along with a list of

child nodes. This specification forms an algebraic data type—that is, a compound

data type built from other data types:

⟨tree⟩ |= (node ⟨data⟩ ⟨trees⟩)

⟨trees⟩ |= ⊥ | ⟨tree⟩ ⟨trees⟩

⟨data⟩ |= (data ⟨color⟩ ⟨size⟩)

⟨color⟩ |= integer

⟨size⟩ |= integer

For example, one datapoint could be (node (data 4 10) (node (data 5 5))).

Given data in this format, we can directly translate each datapoint into a program

that returns this datapoint (by calling the corresponding sequence of constructors).

Given a list datapoints, we can then construct the initial probabilistic program

as (uniform-choice datapoints), the program that returns one of the datapoints

uniformly at random.

The length of this program is linear in the number of datapoints, hence this initial

program tends to be rather complex. Moreover, it severely overfits: it never generates

data that is not in the initial dataset. This is where program transformations come

58

in: step by step, we identify and factor out (approximately) repeated structure, which

leads to lower complexity and more generalization, at the cost of a decrease in the

probability that the program assigns to the initial dataset.

The first program transform we have explored is abstraction. Abstraction intro-

duces new functions based on repeated syntactic patterns. For programs constructed

using data incorporation, such syntactic patterns directly correspond to patterns in

the observed data. Finding matching subexpressions and extracting them into a new

function allows us to transform, for example, this program

(uniform-choice

(node ∙ (node ∙ (node ∙) (node ∙)))

(node ∙ (node ∙ (node ∙) (node ∙)))

(node ∙ (node ∙ (node ∙) (node ∙))))

into the following more compact form:

(define (f x y)

(node ∙ (node ∙ (node x) (node y))))

(uniform-choice (f ∙ ∙) (f ∙ ∙) (f ∙ ∙))

This program, you may note, can be compressed further without loss. We can remove

one of the arguments to f, since x and y take an on the same values in all of their

instantiations:

(define (f x)

(node ∙ (node ∙ (node x) (node x))))

(uniform-choice (f ∙) (f ∙) (f ∙))

We call the larger class of transforms that contains this particular rewrite deargumen-

tation. Transforms in this class notice when instantiations of a function argument

can be expressed compactly in terms of other values available in the same context,

59

and—when that is the case—remove the argument and replace its use with the in-

ferred proxy definition. This idea is very general: besides removing variables with

identical (or similar) instantiations, more sophisticated versions can replace values

with random variables and induce stochastic recursion.

Finally, we need to compute 𝑃 (𝑀) and 𝑃 (𝐷|𝑀) in order to assign a score to

each of the programs in our search space. For 𝑃 (𝑀), we use a program-length prior

to bias the search towards smaller programs:

𝑃 (𝑀) ∝ 𝑒−𝛼 size(𝑀) (3.3)

To estimate 𝑃 (𝐷|𝑀), we use a combination of Sequential Monte Carlo and Selective

Model Averaging as described in Hwang et al. [39].

We have applied this scheme to a number of simple examples in the domain of

little trees, as shown in Figures 3-3 to 3-6. For each example, we show (a) observations

generated by a probabilistic program; data of this type constitutes the training set

for our algorithm. We also show (b) samples from the induced program. To the

extent that samples from the induced program look like samples from the original

program, even when they are not identical, we have succeeded in capturing structure

in the underlying generative process.

3.5 Conclusion

Most studies of concept learning have focused on relatively unstructured objects

based on simple features. We have suggested viewing concepts as probabilistic pro-

grams that describe stochastic generative processes for more structured objects. In

this view, concepts denote distributions over objects, and these distributions are built

60

compositionally. We explored this idea within a domain of tree-like objects, carried

out a study of human generalization using a broad variety of concepts in this domain,

and sketched an algorithm for learning such concepts from data. Our results suggest

that humans are able to extract abstract regularities, such as recursive structure,

from examples, and that algorithms can extract similar regularities, but also that

there are many subtle effects to be discovered and accounted for in such domains.

61

(a) Samples from the original program

(b) Samples from the induced program

Figure 3-3: Program induction example: flower

(a) Samples from the original program (b) Samples from the induced program

Figure 3-4: Program induction example: simple recursion

62

(a) A sample from the
original program

(b) Samples from the induced program. A single observation is suf-
ficient for the induction of a recursive program

Figure 3-5: Program induction example: vine

(a) Samples from the
original program

(b) Samples from the induced program

Figure 3-6: Program induction example: tree

63

64

Chapter 4

Reasoning about Reasoning as

Nested Conditioning

4.1 Introduction

Reasoning about the beliefs, desires, and intentions of other agents—theory of mind—

is a central part of human cognition and a critical challenge for human-like artificial

intelligence. Reasoning about an opponent is critical in competitive situations,

while reasoning about a compatriot is critical for cooperation, communication, and

maintaining social connections. A variety of approaches have been suggested to ex-

plain humans’ theory of mind. These include informal approaches from philosophy

and psychology, and formal approaches from logic, game theory, artificial intelli-

gence, and, more recently, Bayesian cognitive science. Many of the older approaches

neglect a critical aspect of human reasoning—uncertainty—while recent probabilis-

tic approaches tend to treat theory of mind as a special mechanism that cannot

This chapter is based on Stuhlmüller and Goodman [83].

65

be described in a common representational framework with other aspects of men-

tal representation. In this chapter, we discuss how probabilistic programming, a

recent merger of programming languages and Bayesian statistics, makes it possible

to concisely represent complex multi-agent reasoning scenarios. This formalism, by

representing reasoning itself as a program, exposes an essential contiguity with more

basic mental representations.

Probability theory provides tools for modeling reasoning under uncertainty: dis-

tributions formalize agents’ beliefs, conditional updating formalizes updating of be-

liefs based on evidence or assertions. This approach can capture a wide range of

reasoning patterns, including induction and non-monotonic inference. In cognitive

science, probabilistic methods have been very successful at capturing aspects of hu-

man learning and reasoning [92]. However, the fact that conditioning is an operation

applied to such models and not itself represented in such models makes it difficult to

accommodate full theory of mind: We would like to view reasoning as probabilistic

inference and reasoning about others’ reasoning as inference about inference; how-

ever, if inference is not itself represented as a probabilistic model we cannot formulate

inference about inference in probabilistic terms.

Probabilistic programming is a new, and highly expressive, approach to prob-

abilistic modeling. A probabilistic program defines a stochastic generative process

that can make use of arbitrary deterministic computation. In probabilistic programs,

conditioning itself can be defined as an ordinary function within the modeling lan-

guage. By expressing conditioning as a function in a probabilistic program, we rep-

resent knowledge about the reasoning processes of agents in the same terms as other

knowledge. Because conditioning can be used in every way an ordinary function can,

including composition with arbitrary other functions, we may easily express nested

conditioning: we can condition any random variable, including random variables that

66

are defined in terms of other conditioned random variables. Nested conditioning de-

scribes reasoning about reasoning and this makes theory of mind amenable to the

kind of statistical analysis that has been applied to the study of mental representation

more generally.

The probabilistic program view goes beyond other probabilistic views by ex-

tending compositionality from a restricted model specification language to a Turing-

complete language, which allows arbitrary composition of reasoning processes. For

example, the multi-agent influence diagrams proposed by Koller and Milch [45] com-

bine the expressive power of graphical models with the analytical tools of game

theory, but their focus is not on representing knowledge that players’ might have

about other players’ reasoning.

In the following, we show examples of how programs with nested conditioning

concisely express reasoning about agents in game theory, artificial intelligence, and

linguistics. In Chapter 5, we will describe the challenges in computing the predic-

tions of these models, give a generic Dynamic Programming inference algorithm for

probabilistic programs, and explain how it can help address some of these practical

challenges.

4.2 Modeling theory of mind as nested conditioning

In Chapter 2, we outlined the probabilistic programming approach to capturing un-

certain knowledge. We described how the operation of conditioning itself could be

represented as an ordinary function in Church, query (Figure 2-3). This represen-

tation opens up an intriguing possibility: we can nest a call to the query function

within other calls to this function. If we view query as capturing reasoning, then

such nested models will capture reasoning about reasoning. We now illustrate how

67

(define (sample-location)
(if (flip .55)

'popular-bar
'unpopular-bar))

(define (alice depth)
(query
(define alice-location (sample-location))
alice-location
(equal? alice-location (bob (- depth 1)))))

(define (bob depth)
(query
(define bob-location (sample-location))
bob-location
(or (= depth 0)

(equal? bob-location (alice depth)))))

Figure 4-1: A Schelling coordination game in Church. Two agents, Alice and Bob,
want to meet. They choose which bar to go to by recursively reasoning about one
another.

this approach can be used to capture multi-agent reasoning, using examples from

game theory, linguistics, and artificial intelligence.

4.3 Schelling coordination games

As a first illustration of our approach to theory of mind, consider a coordination game

of the kind discussed by Schelling [74]: Two agents, Alice and Bob, want to meet, and

they share the common knowledge that there are two possible meeting locations, one

of them slightly more popular than the other. Each agent is modeled as making an

inference about where it would be best to go. This can be formalized as a conditional

distribution: “my location conditioned on my partner choosing the same location.”

68

2 4 6 8 10

0
.0

0
.4

0
.8

Depth of recursion

P
ro
b
a
b
il
it
y

Popular bar
Unpopular bar

Figure 4-2: As the depth of recursive reasoning increases, the agents’ actions converge
to a focal point in the Schelling coordination game shown in Figure 4-1.

Since each agent starts with the bias that the other agent is more likely to go to the

more popular place, they are yet more likely to go to this place themselves. This

reasoning proceeds recursively, increasing the chance that the agents will go to the

popular place. Each stage of this recursion is a conditional distribution.

This is an instance of planning as inference: we transform the problem of finding

high-utility actions into the problem of computing a conditional distribution. The

problem of maximizing expected utility can generally be translated into a likelihood

maximization problem [94]. We are interested in modeling agents which choose

only approximately optimally. This can be achieved using softmax-optimal decision-

making, where an action 𝑎 is chosen in proportion to its exponentiated expected

utility under a belief distribution 𝑃 (𝑠), i.e., 𝑃 (𝑎) ∝ exp
(︀
𝛼E𝑃 (𝑠)[𝑈(𝑎; 𝑠)]

)︀
. We follow

this approach throughout this chapter, however we simplify by using a single-sample

approximation to estimate the expected utility, and assume a shared prior belief

69

distribution, except where we note otherwise.

Figure 4-1 shows how to use the planning-as-inference idea to formalize recursive

reasoning in the Schelling coordination game as a Church program. The parameter

depth controls the number of levels of recursive reasoning. Figure 4-2 shows how

the marginal distribution changes as a function of this parameter. As the depth

increases, the agents’ actions converge on the focal point of the game—they always

go to the popular location.

This illustrates a common pattern when modeling agents using probabilistic pro-

grams, namely the use of goal predicates instead of utility functions. It is possible

to express choice in proportion to utility explicitly (by conditioning on a coin flip

with a weight corresponding to the exponentiated utility of the outcome), but this is

often equivalent to directly condition on the desired outcome (goal). This results in

concise models that are intuitively appealing, since they match how we tend to think

about our plans: not in terms of an explicit ordering on outcomes, but as aimed at

achieving particular goals.

Uncertainty, including uncertainty about other players’ uncertainty, can also be

modeled using the standard tools of game theory, but the strengths of these tools lie

elsewhere (e.g., amenability to analysis with respect to equilibria). In a discussion

of games with incomplete information, Kreps [47] writes:

“If we wanted something really complex, we could imagine that player 3

has an assessment concerning player 2’s assessment of player 3’s assess-

ment of player 1’s utility function. (If you think this is painful to read,

imagine having to draw the corresponding extensive form.)”

Probabilistic programs make it easy to concisely express facts about other players’

state of mind. For example, the coordination game can easily be modified to capture

70

(define (speaker access state depth)
(query
(define sentence (sentence-prior))
sentence
(equal? (belief state access)

(listener access sentence depth))))

(define (listener speaker-access sentence depth)
(query
(define state (state-prior))
state
(if (= 0 depth)

(sentence state)
(equal? sentence

(speaker speaker-access state (- depth 1))))))

Figure 4-3: Pragmatic reasoning in language understanding as recursively nested
conditioning. For the full model specification, see Stuhlmüller and Goodman [83].

false beliefs [83]: Bob believes that Alice wants to meet him, and Alice knows this,

but in fact Alice wants to avoid Bob. The compositional nature of probabilistic

programs allows anything that can be expressed on its own to become the subject

of others’ reasoning, including agents’ beliefs and reasoning steps. This is key for

accurately modeling the interaction between agents who can represent other agents

as intelligent reasoners.

4.4 Language understanding

Communication can be seen as a special case of decision-making in a multi-agent con-

text: a speaker chooses utterances given an intended interpretation, and a listener

chooses an interpretation given an utterance. We build on the rational speech-act

theory of language understanding [16]: listeners model speakers as choosing their

71

Speaker has partial knowledge

Interpretation of “some”

P
ro
b
ab

il
it
y

0.2

0.4

0.6

0 1 2 3

Speaker has full knowledge

Interpretation of “some”

P
ro
b
ab

il
it
y

0.2

0.4

0.6

0 1 2 3

Figure 4-4: Predictions for the language understanding model shown in Figure 4-3.
When the speaker has knowledge of the state of all 3 objects, the listener interprets
“some” as likely to imply “not all”. When the speaker has access to only 2 out of 3
objects, this implicature is cancelled and “some” is compatible with referring to all
objects.

utterances approximately optimally based on social goals such as conveying infor-

mation. Listeners then interpret utterances by “inverting” this model using Bayesian

inference and drawing inferences about, among other things, the state of the world

that caused the speaker to choose this utterance. This can again be seen as an

instance of planning as inference, if we model the choice of utterances and interpre-

tations as samples from conditional distributions.

The basic tenet of pragmatics is that listeners sometimes make inferences that

differ from those that directly follow from the literal meaning of an utterance. Con-

sider the sentence “some of the apples are red.” In general, we take the speaker to

mean that not all of the apples are red. This effect is called a scalar implicature

[38]. The rational speech-act theory predicts that such effects are sensitive to the lis-

tener’s beliefs about the speaker’s knowledge of the state of the world. For example,

if there are three apples in total, and if the speaker has only seen one of the apples

(and it was red), then the speaker’s utterance “some of the apples are red” does not

72

imply that not all of them are red. This effect has been confirmed experimentally in

Goodman and Stuhlmüller [23].

Figure 4-3 shows one way to model speaker and listener in this situation. The

speaker chooses a sentence conditioned on the listener inferring the intended state of

the world when hearing this sentence; the listener chooses an interpretation condi-

tioned on the speaker selecting the given utterance when intending this meaning. Af-

ter a few iterations (determined by the depth parameter), this mutual recursion bot-

toms out and the speaker interprets the utterance literally, i.e., the speaker chooses

an intended state conditioned on the given sentence being true of this state. Figure

4-4 shows model predictions that mirror the implicature-cancelling effect found in

experiments—the probability that all three apples are red, after hearing “some of the

apples are red,” is much less when the speaker has seen all of the apples.

The predicted interaction between the listener’s interpretation and the speaker’s

knowledge does not depend on the particular choice of words and intended meanings,

but is a more general result of the fact that the speaker is modeled as choosing words

based on expected utility. We can easily replace the set of words used in the model to

derive predictions about pragmatic inferences in other contexts. We can also change

the shared background knowledge to derive predictions for interpretations in other

contexts, all without changing the core model of language understanding. This is an

example of the particular kind of modularity that results from representing agents

and their mental content as functional probabilistic programs: A priori, different

model parts are independent and can thus easily be replaced with alternatives. A

posteriori, i.e., as the result of conditioning, nontrivial dependencies between different

model elements can arise, such as those between speaker’s knowledge and listener’s

interpretation.

73

(define (exp-utility outcome player)
(cond [(win? player outcome) 1.0]

[(draw? outcome) 0.1]
[else 0.01]))

(define (sample-action state player)
(query
(define action (action-prior state))
(define outcome (sample-outcome state action player))
action
(flip (exp-utility outcome player))))

(define (sample-outcome state action player)
(let ([next-state (transition state action player)])

(if (terminal? next-state)
next-state
(let ([next-player (other-player player)])

(sample-outcome next-state
(sample-action next-state

next-player)
next-player)))))

(define start-state
'((0 o 0)

(o x x)
(0 o 0)))

(sample-action start-state 'x)

Figure 4-5: Tic-tac-toe in Church. Each player chooses actions by sampling an
action, simulating the game until the end, and choosing actions in proportion to how
likely they are to lead to a successful outcome at the end of the game. This mental
simulation includes reasoning about both players’ reasoning at all future game steps,
including their reasoning about the other player. For the definition of functions such
as action-prior and transition, see Stuhlmüller and Goodman [83]. To make
multi-step planning more robust, adjust the optimization strength by sampling and
conditioning on multiple outcomes in sample-action.

74

A B C D

M
ar

gi
n
al

p
ro

b
ab

il
it
y

0.
0

0.
2

0.
4

0.
6

0.
8

1
.0

A B

C D

Figure 4-6: Where should X move next? This plot shows the predictions derived
from the model in Figure 4-5. B and D are more likely to lead to a successful outcome,
therefore they are more likely to be chosen.

4.5 Game playing

Theory of mind is an essential part of playing games such as chess and Go. Each

player chooses moves depending on their beliefs about the other players, including

their beliefs about the other players’ beliefs. As in the Schelling coordination game,

this kind of reasoning can be modeled using the planning-as-inference transforma-

tion: actions are chosen conditional on ultimately leading to a successful outcome.

Whereas the Schelling coordination game is a one-shot setting, many games require

sequential decision-making. Moves made in one turn depend on the expected con-

sequences for subsequent turns, and on each player’s decision-making strategy in

subsequent turns.

As a simple example of a two-player game with sequential decision-making, con-

sider Tic-tac-toe. Figure 4-5 shows the core of a Church implementation of a player.

Figure 4-6 shows a simple prediction by this model that matches our intuitions: in a

situation where X is not directly threatened and where X has two possible types of

moves, one of which opens up a double threat, the forking move will be chosen, as it

75

allows X to win two turns from now.

The player implemented in Church recursively reasons about the future moves

of another player who implements the same strategy. In the first round, player 𝑋

samples an action conditioned on the game that starts with player 𝑋 taking this

action ultimately leading to a win for player 𝑋. Sampling from this conditioned

distribution requires a sample from another conditioned distribution, namely from

the distribution on player 𝑂’s action in round two, which is conditioned on player 𝑂

ultimately winning. This in turn depends on player 𝑋’s action in round three, and

so on, until the game tree bottoms out at a win for one of the players or at a draw.

The functions sample-action and sample-outcome make no mention of Tic-tac-

toe in particular—they are a fully generic implementation of approximately optimal

decision-making in a setting where two players take turns. By supplying different im-

plementations of functions such action-prior and transition, we can use the same

framework to model other games. This suggests that, to some extent, representation

of players and games can be studied independently, with interesting predictions aris-

ing from their interaction. For example, from a psychological perspective, one can

ask whether and when a player model that judges actions by sampling a single out-

come matches empirical data, and when a more strongly optimizing model is more

accurate.

Representing sequential decision-making in games as probabilistic programs nat-

urally lends itself to interesting extensions. Instead of modeling both players as

identical thinkers, we can model their particular strategic tendencies, their poten-

tially approximate evaluation of game states, their beliefs about who they are playing,

and their process of learning about the other player from past moves. This could be

used, for instance, to build computer opponents that reason about the human player’s

state of mind and that use sophisticated tactics such as “misleading the player,” not

76

because such tactics are built in, but as a consequence of rational planning with a

model that represents the human player’s model of the situation. This would have

relatively little effect in a game like Tic-tac-toe, but an enormous effect in games like

Go and Poker.

4.6 Induction puzzles

Induction puzzles are an instance of multi-agent reasoning that goes beyond the

two-player case. Typically, induction puzzles describes a scenario involving multiple

agents that are all assumed to go through similar reasoning steps. In such a scenario,

the outcome can usually be determined inductively by first solving a simple case, then

assuming that all agents know the solution to this simple case, which in turn makes

another case simple to solve for all agents.

We consider a stochastic version of the Blue-Eyed Islanders puzzle (also known

as the muddy children and cheating husbands problem), a well-known problem in

epistemic logic [19, 89]. The setup is as follows: There is a tribe on a remote island.

Out of the 𝑛 people in this tribe, 𝑚 have blue eyes. Their religion forbids them

to know their own eye color, or even to discuss the topic. Therefore, everyone sees

the eye color of every other islander, but does not know their own eye color. If an

islander discovers their eye color, they have to publicly announce this the next day

at noon. All islanders are highly logical. One day, a foreigner comes to the island

and—speaking to the entire tribe—he truthfully says: “At least one of you has blue

eyes.” What happens next?

Intuitively, the solution is as follows. If there is only one islander with blue eyes,

the islander will see that no other person has blue eyes and will announce their

knowledge the next day. If no islander does so the next day, then everyone knows

77

(define (agent t raised-hands others-blue-eyes)
(query
(define my-blue-eyes (if (flip baserate) 1 0))
(define total-blue-eyes (+ my-blue-eyes others-blue-eyes))
my-blue-eyes
(and (> total-blue-eyes 0)

(! (𝜆 () (= raised-hands
(run-game 0 t 0 total-blue-eyes)))

2))))

(define (get-raised-hands t raised-hands true-blue-eyes)
(+ (sum-repeat

(𝜆 () (agent t raised-hands (- true-blue-eyes 1)))
true-blue-eyes)

(sum-repeat
(𝜆 () (agent t raised-hands true-blue-eyes))
(- num-agents true-blue-eyes))))

(define (run-game start end raised-hands true-blue-eyes)
(if (>= start end)

raised-hands
(run-game

(+ start 1)
end
(get-raised-hands start raised-hands true-blue-eyes)
true-blue-eyes)))

Figure 4-7: Church implementation of a stochastic version of the Blue-Eyed Islanders
puzzle. For the full specification, see Stuhlmüller and Goodman [83].

78

‘At least one of you has blue eyes.’

Number of islanders announcing their eye color

P
ro
b
a
b
il
it
y

0.0
0.2
0.4
0.6
0.8

0 1 2 3 4

Day 1

0 1 2 3 4

Day 2

0 1 2 3 4

Day 3

0 1 2 3 4

Day 4

’
‘At least one of you has blue eyes and a twitchy hand.’

Number of islanders announcing their eye color

P
ro
b
ab

il
it
y

0.0
0.2
0.4
0.6

0 1 2 3 4

Day 1

0 1 2 3 4

Day 2

0 1 2 3 4

Day 3

0 1 2 3 4

Day 4

Figure 4-8: Model predictions for a stochastic version of the Blue-Eyed Islanders
puzzle with population size 4, all islanders blue-eyed. Four days after the foreigner
makes his announcement, the islanders are likely to realize that they have blue eyes.
However, if the foreigner (truthfully) states that one of the blue-eyed islanders has a
twitchy hand and mistakenly announces that she has blue eyes 10% of the time, this
inference becomes much less pronounced.

79

that there are at least two islanders with blue eyes. Since each of the two islanders

with blue eyes only observes one other blue-eyed islander, they can deduce that they

must have blue eyes themselves, and so the two blue-eyed islanders announce their

eye colors on the second day. Generalizing this line of reasoning, all 𝑚 blue-eyed

islanders announce their eye color on the 𝑚-th day.

Figure 4-7 shows a formalization of a stochastic version of this puzzle. We have

converted a multi-agent sequential planning problem into an inference problem that

uses nested conditioning to model recursive reasoning. In this model, we have in-

creased the optimization strength of action selection in softmax-optimal sampling

(𝛼) by conditioning on two successes instead of one, thus moving part of the way

from probability matching to utility maximization.

Figure 4-8 shows the corresponding model predictions for population size 4 when

all islanders are blue-eyed: on the 4th day, it is most likely that all islanders decide

to announce their eye color. In this version, the probability of an islander making

the announcement is proportional to their estimate for how likely they are to have

blue eyes.

The induction that happens as a result of this conversion differs from the backwards-

induction in the previous section. In playing games, the current action is chosen based

on reasoning about the likely future outcome of the game, which depends on model-

ing the other agents’ future reasoning. In this induction puzzle, the current action is

chosen based on current beliefs (“do I have blue eyes or not?”), which are the result of

explaining past observations (“how many islanders have made the announcement?”)

by reasoning about other agents’ past reasoning.

One of the main attractions of probabilistic programming as a modeling frame-

work is that it is easy to rapidly prototype complex probabilistic models, since

implementations of probabilistic programming languages provide generic inference

80

algorithms; it is not necessary to design model-specific algorithms. This is highly

useful in multi-agent scenarios, where complex interdependencies between agents’

conditional inferences can make it difficult to “see” what the outcome of a model

change is. For example, what if the foreigner had said to the islanders: “At least one

of you has blue eyes, and raises their hand by accident 10% of the time.” Changing

the model to account for this requires one additional line of code (see Stuhlmüller

and Goodman [83]). The predictions are shown in Figure 4-8. It still takes four days

for the islanders to realize with some uncertainty what their eye color is, but each

islander is less certain and therefore less likely to make the announcement.

The idea of common knowledge is central to both versions of this induction puzzle.

Before the foreigner makes his announcement, every islander already knows that

there is at least one other islander with blue eyes simply by observing the others’

eye colors. By speaking in front of the entire tribe, the foreigner causes this fact

to become common knowledge: now, everyone knows that everyone knows this fact,

and everyone knows that everyone knows that everyone knows, and so on. This

idea is reflected in the Church program by the condition (> total-blue-eyes 0).

This condition applies both to the islander whose reasoning is modeled, to his mental

model of other islanders’ reasoning, to the mental models of their mental models, and

so on. If we remove this condition, the effect of all islanders inferring their eye color

on the 𝑚-th day goes away. By representing this multi-agent reasoning scenario as a

probabilistic program, we have formalized a hypothesis about what it means to have

common knowledge, and we are able to explore the implications of this hypothesis.

81

4.7 Discussion

Our approach to theory of mind is based on a long history of both informal and com-

putational accounts of theory of mind [e.g., 7, 25, 29, 96]. For an outline of existing

logical and probabilistic approaches from the perspective of building cognitive archi-

tectures, see Bello [6]. While much of the relevant work on cognitive architectures

aims to take into account resource constraints of the agents that are modeled, this

is not our goal; we have presented tools for computational-level modeling of agents’

reasoning in multi-agent scenarios. Such models constitute a normative standard

that can be compared to actual patterns in human reasoning, which in turn may

help us devise process-level descriptions of the same phenomena.

Most directly, we build on the Bayesian approach to theory of mind [4, 5], which

takes the principle of rational action to be central to the concept of intentional

agency: all else being equal, agents are expected to choose actions that satisfy their

goals as effectively as possible. Given a probabilistic generative model of an agent’s

planning process that has this property, and given observations, Bayesian theory of

mind simply proposes that we can infer the hidden internal states of the agent—

beliefs, desires, and goals—by inverting this model, i.e., by conditioning. By viewing

conditioning as a function that is represented in a probabilistic program, we have

presented a simple, unified formalism for implementing Bayesian theory of mind, and

for extending it to settings such as the recursive reasoning scenarios presented in this

chapter.

Philosophically, our approach suggests that it may be possible to acquire the

mental machinery for theory of mind from simpler primitives such as control struc-

ture, random choice, and recursive functions. Specialized mental modules—such as

a “belief box” and a “desire box” [61]—might arise simply as a consequence of an

82

agent’s attempt to explain her observations in a parsimonious way, or might not

turn out to be necessary to explain our cognitive capabilities in the first place.

4.8 Conclusion

We have described how probabilistic programs can represent multi-agent scenarios

by modeling each agent’s reasoning as conditional sampling. Since conditioning is

an operation that can be defined within such models, it can become the subject of

other agents’ reasoning. This representation goes beyond existing formalisms, such

as graphical models, where conditioning is more naturally seen as an operation that

is applied to a model, but not itself represented.

There are many research opportunities related to this way of studying theory of

mind. One avenue is to translate existing models used in fields such as game theory

and linguistics into the framework of probabilistic programs. Extensions of these

models that are difficult to express using existing modeling languages, but that are

natural using this new approach, will suggest themselves. Further, integration of

diverse aspects of social cognition will be fostered by representing them in a common

representational system—libraries of probabilistic program components for cognition

can be naturally integrated into a more complete architecture.

Viewing theory of mind as reasoning about reasoning and formalizing this as

nested conditioning is appealing on both philosophical and scientific grounds. By re-

alizing theory of mind in a uniform representational framework for reasoning under

uncertainty, we expose essential assumptions and provide opportunities for construct-

ing more complex, and realistic, models of social reasoning.

83

84

Part II

Algorithms

85

86

Chapter 5

Dynamic Programming for

Probabilistic Programs

5.1 Introduction

Probabilistic programming allows rapid prototyping of complexly structured proba-

bilistic models without requiring the design of model-specific inference algorithms.

This makes probabilistic programs attractive for scientific research: when hypotheses

are formalized as programs, it is possible to quickly explore the space of hypotheses.

The same features make probabilistic programs compelling for education: students

can focus on understanding modeling and inference patterns before they need to learn

about inference implementations.

However, the performance of current inference algorithms for generic probabilistic

programs can vary greatly between models, even for models with a very small number

of random choices. This presents an obstacle to the use of probabilistic programs

This chapter is based on Stuhlmüller and Goodman [82] and Stuhlmüller and Goodman [83].

87

in research and teaching. In fact, many of the models used in these domains are

small enough that exact computation is feasible in principle, but they often exhibit

patterns, such as nested conditioning, that make naive enumeration intractable.

In this chapter we develop a generic Dynamic Programming algorithm, which ex-

pands the applicability of exact inference for probabilistic programs. Given an inter-

preter for an arbitrary probabilistic programming language and a discrete probabilis-

tic program, this algorithm computes the marginal distribution of the program—i.e.,

its distribution on return values—while sharing subcomputations where possible. By

viewing conditioning as marginalization of a rejection sampler, this captures the full

range of probabilistic operations over arbitrary models.

The key obstacle to Dynamic Programming, which is neither present in caching

deterministic interpreters nor in Dynamic Programming algorithms for more re-

stricted model classes, is the possibility of stochastic self-recursion: an interpreter

call with particular arguments can result in a call with the same arguments. Fig-

ure 5-1 shows a program that exhibits this property. This is not a corner case: for

instance, all models that implement conditioning via rejection sampling have this

property (Figure 2-3).

To make Dynamic Programming possible in the presence of recursion, we first

compile the given probabilistic program to an intermediate representation that reifies

dependencies between sub-distributions. We then compute the marginal distribution

from this representation. Our intermediate representation is a generalization of sum-

product networks [67] that makes dependencies—including recursive dependencies—

explicit: a factored sum-product network (FSPN). While computing the distribution

implied by a sum-product network is linear in the size of the network, FSPNs are

more difficult to solve in general. We solve FSPNs by clustering their vertices into

strongly connected components and by solving each component using fixed-point

88

(define (game player)
(if (flip .6)

(not (game (not player)))
(if player (flip .2) (flip .7))))

(game true)

Figure 5-1: A simple recursive probabilistic program

iteration.

In the following, we first describe the structures our algorithm operates on: prob-

abilistic programs, their interpreters, and FSPNs. We then present the two steps

of our algorithm, compilation of programs to FSPNs and computation of marginal

distributions given a FSPN. We demonstrate the algorithm on examples used in

teaching, cognitive science research, and game theory, and explain what makes it

attractive in each case. We relate the algorithm to the literature and conclude with

future research directions.

5.2 Inference as marginalization

Recall that a probabilistic program is a program in a language with primitives for

sampling from distributions such as Bernoulli and multinomial. Probabilistic pro-

grams describe generative models and thus denote distributions. An interpreter

specifies this denotation by implementing a process that, given a program, generates

samples from the program’s distribution. For example, an interpreter for the Church

language [26] takes a program expression and environment, and returns a sample

from the program’s distribution on Church values. This sample is generated using

recursive calls to the interpreter, with each subcall defining a distribution on values

and resulting in a sample from this sub-distribution.

89

The problem of inference for generative models is commonly formulated in terms

of a conditioning. However, as we have seen in Chapter 2, for any conditional distri-

bution there is an equivalent unconditioned model that samples outcomes with the

same probabilities. Inference can be understood as the problem of marginalization

of a model that contains a call to the rejection-query function (Figure 2-3). Of

course, actually drawing conditional samples using rejection is very inefficient: In

general, we may have to tolerate an exponential number of rejected samples before

the condition is satisfied. However, if we could efficiently marginalize the rejection

procedure, eliminating all zero-probability paths, then we would have solved our

target inference problem.

For many probabilistic programs, efficient marginalization of this sort is possible.

We are interested in programs for which many different executions share substructure.

Problems with this character are classically amenable to Dynamic Programming.

Recursive programs, like rejection-query, which involve multiple executions of the

same procedure application, provide a particularly rich opportunity to exploit shared

substructure. We will focus on these cases in the examples below.

5.3 Multiply-intractable distributions

As seen in Chapter 4, probabilistic programs that use stochastic recursion to express

nested conditioning can represent a wide and flexible space of multi-agent reasoning.

We now explain the challenges of computing (or sampling from) the distributions de-

fined by models with nested conditioning, and then sketch a Dynamic Programming

algorithm that addresses some of these challenges.

Instead of directly attempting to sample from a program’s distribution on return

values, consider the goal of sampling from a program’s distribution on executions.

90

(query
(define a (sample-integer 10))
(define b

(query
(define c (sample-integer 10))
c
(> (+ a c) 8)))

a
(= (+ a b) 13))

Figure 5-2: A simple program with nested conditioning.

An execution corresponds to a complete sequences of random choices and determines

a return value. For an unconditioned program, the probability of an execution is

the product of all random choices that occur within this execution, and thus is

easy to compute. For a conditioned program, the probability of an execution is

only proportional to this product, since the condition rules out some executions,

redistributing their mass on the “allowed” executions. Computing this probability

exactly is often intractable, as it requires integrating over all program executions.

Many algorithms for approximate inference require only the unnormalized probability

(i.e. the probability up to an unknown normalizing constant).

However, in the setting of nested conditioning, even the unnormalized probability

of an execution can be difficult to compute.

For example, consider the program in Figure 5-2. This program could model the

following situation: Two agents play a game in which each agent needs to name a

number between 0 and 9 and they win if their numbers add up to 13. The first

player knows this, and he knows that the second player gets to see the number the

first player chooses, but the second player mistakenly thinks that the two win if their

numbers add up to any number greater than 8 (and the first player knows this as

91

well). What number should the first player choose?

In this game, we can write the probability of a program state as follows:

𝑝(𝑎, 𝑏|𝑎+ 𝑏 = 13) =
𝑝(𝑎)𝑝(𝑏|𝑎)𝛿𝑎+𝑏=13∑︀

𝑎′,𝑏′ 𝑝(𝑎
′)𝑝(𝑏′|𝑎′)𝛿𝑎′+𝑏′=13

∝ 𝑝(𝑎)𝑝(𝑏|𝑎)𝛿𝑎+𝑏=13

Here, 𝛿𝑎+𝑏=13 is the delta function that returns 1 if 𝑎+ 𝑏 = 13 is satisfied, otherwise

0. The distribution 𝑝(𝑏|𝑎) is itself defined in terms of a conditional distribution 𝑞:

𝑝(𝑏|𝑎) = 𝑞(𝑏|𝑎, 𝑎+ 𝑏 > 8) =
𝑞(𝑏|𝑎)𝛿𝑎+𝑏>8∑︀
𝑏′ 𝑞(𝑏

′|𝑎)𝛿𝑎+𝑏′>8

Making use of the fact that 𝑝(𝑎) and 𝑞(𝑏|𝑎) are uniformly distributed, the unnormal-

ized probability of a program state is

𝑝(𝑎, 𝑏|𝑎+ 𝑏 = 13) ∝ 𝛿𝑎+𝑏=13∑︀
𝑏′ 𝛿𝑎+𝑏′>8

.

Intuitively, this means that the probability of a state (𝑎, 𝑏) is inversely proportional

to the number of assignments 𝑏′ that the second player could have chosen to make

the sum 𝑎+𝑏′ greater than 8, since each such assignment reduces the chance that the

second player chooses the assignment that makes 𝑎 + 𝑏 = 13 true. The first player

is best off choosing 𝑎 = 4, such that for the second player, the goal of making their

sum greater than 8 coincides as much as possible with the goal of making their sum

equal to 13.

For the purpose of inference, the relevant insight is that computing the unnor-

malized probability requires us to sum over the state space of the inner query. That

is, even the unnormalized probability of the outer query depends on the normalizing

92

constant of the inner query. While this is easy to compute for the given toy problem,

it is typically difficult and makes inference in models with nested queries challenging.

To generalize this line of reasoning, assume that we are interested in sampling

from a distribution

𝑝(𝑦|𝑐1) =
𝑝(𝑦)𝛿𝑐1(𝑦)∫︀
𝑝(𝑦)𝛿𝑐1(𝑦) d𝑦

∝ 𝑝(𝑦)𝛿𝑐1(𝑦).

Here, 𝑦 is a program state, 𝑐1 is a condition on that state, 𝑝(𝑦)𝛿𝑐1(𝑦) is the unnor-

malized probability of 𝑦, and 𝑍𝑦 =
∫︀
𝑝(𝑦)𝛿𝑐1(𝑦) d𝑦 is the normalization constant.

Suppose that the distribution on program states 𝑝(𝑦) factors as follows:

𝑝(𝑦) = 𝑝(𝑦1, 𝑦2) = 𝑝(𝑦1)𝑝(𝑦2|𝑦1)

Assume further that 𝑝(𝑦2|𝑦1) is defined in terms of a conditional distribution itself,

i.e., we are describing a distribution defined in terms of a query within a query1:

𝑝(𝑦2|𝑦1) = 𝑞(𝑦2|𝑦1, 𝑐2)

=
𝑞(𝑦2|𝑦1)𝛿𝑐2(𝑦2)∫︀
𝑞(𝑦2|𝑦1)𝛿𝑐2(𝑦2) d𝑦2

Then, the unnormalized probability of a state 𝑦 is:

𝑝(𝑦|𝑐1) ∝ 𝑝(𝑦1)𝑝(𝑦2|𝑦1)𝛿𝑐1(𝑦)

=
𝑝(𝑦1)𝑞(𝑦2|𝑦1)𝛿𝑐2(𝑦2)𝛿𝑐1(𝑦)∫︀

𝑞(𝑦2|𝑦1)𝛿𝑐2(𝑦2) d𝑦2

1Note that in the term 𝑞(𝑦2|𝑦1, 𝑐2) there is an ambiguity: 𝑦1 is a parameter to this function,
while 𝑐2 is a condition. This is a common ambiguity in probability notation that is clarified in
probabilistic program notation.

93

Note that the denominator depends on 𝑦2 and thus on 𝑦. It affects the relative

probabilities of different 𝑦 and cannot be ignored, even if we are only interested in

the unnormalized probability. As a consequence, evaluation of unnormalized 𝑝(𝑦|𝑐1)

requires integrating over the domain of 𝑦2, which is often intractable. Since inference

methods such as MCMC are used to approximately sample from distributions that

are “intractable” in the sense that we cannot compute the normalization constant,

models with nested conditioning are called doubly-intractable.

Learning the parameters of a graphical model is an example of such a problem:

for each parameter setting, we need to integrate over the space of all explanations

of the data in order to compute a value proportional to the likelihood of the data.

While auxiliary variable techniques can make sampling tractable in special cases [60],

Murray and Ghahramani [59] conjecture that for general undirected models, there

exists no tractable MCMC scheme that results in the correct stationary distribution.

Most of the examples we have seen define a nesting of conditional distributions

of depth greater than 2. For such multiply-intractable distributions, the difficulty of

evaluating 𝑓 increases exponentially in the depth. If we assume that 𝑞(𝑦2|𝑦1) factors

into an unconditioned and a conditioned distribution, and if we reason analogously to

the steps above, we conclude that naive computation of the unnormalized probability

of a single program execution 𝑦 requires us to solve a multiple integral, thwarting

existing methods for approximate inference.

5.4 A Dynamic Programming algorithm

Since existing methods of approximate inference are intractable for models with

nested queries, we instead pursue exact inference methods that exploit shared sub-

computation to perform tractable inference for modestly sized state spaces. All of

94

the model predictions shown in Chapter 4 have been computed using this algorithm.

We present this Dynamic Programming algorithm as a practical tool for modeling,

not as an hypothesis about human processing; the structural insights this algorithm

leverages, however, may prove useful in future exploration of the processes of so-

cial cognition. We next sketch this inference technique, then follow up with more

technical details.

5.4.1 Approach

Our starting point is this: we are given an interpreter for a probabilistic program-

ming language and a probabilistic program, and we want to compute the marginal

distribution of this program. In other words, we want to compute the distribution

on return values that we would sample from if we executed the program using this

interpreter.

We assume that the interpreter is functional and defined recursively, i.e., in the

process of evaluating a particular program, it calls itself and thus reduces the overall

problem of evaluation to the problem of evaluating a number of smaller objects.

Each of these subproblems has a unique distribution on solutions, and in the process

of marginalization, some subproblems may occur multiple times. Our algorithm is

based on the idea that we can detect repeated, identical subproblems and that we

can then solve each subproblem only once, reusing the results for future occurrences

of the same problem.

In Church, subproblems correspond to subexpressions with environments. For

example, computing the marginal distribution of the Church program (and (flip)

(or (flip) (flip))) involves computing the distribution of (flip) and of (or

(flip) (flip)). In the setting of nested conditioning, the problem of computing

95

the marginal distribution of a query that contains other queries may be such that

the same inner query can be reused for many different settings of the parameters of

the outer query.

To understand what makes marginalization with reuse of computation challeng-

ing, compare to simplified versions of the problem. If we were trying to ensure reuse

of repeated subcomputations for a deterministic interpreter, we could simply mem-

oize it. For a stochastic language, we could imagine a similar approach: use the

interpreter to recursively compute and cache the distribution for each unique inter-

preter call, computing all subdistributions required by a call before we compute the

distribution of the call itself. However, consider the program shown in Figure 5-3.

In order to compute the distribution of the first if-branch of (game true), we need

to know the distribution of (game (not true)), but this in turn depends on the

distribution of (game true). These self-recursive dependencies make direct caching

impossible, as it would lead to infinite regress. A similar pattern is present in queries

that are defined via rejection sampling.

Our algorithm addresses this challenge by first transforming the program into an

intermediate structure that makes these dependencies explicit, then computing the

marginal distribution from this structure in a way that is sensitive to the dependen-

cies.

We first describe the interface the interpreter needs to satisfy such that we can

use it to acquire sufficient information about the program to build our intermediate

structure. We then present this structure and the steps of the algorithm.

By default, an interpreter takes a program and evaluates it, finally returning a

single value. In order to control the evaluation process in a way that lets us acquire

information about the structure of a program’s distribution, we require that the

interpreter is a coroutine that interrupts its evaluation and returns its current state

96

whenever it (1) makes a recursive subcall, (2) samples a primitive random choice,

and (3) returns a terminal value. Each of these cases will correspond to a particular

way of building structure in our intermediate representation.

For our intermediate representation, we desire that it factors out all “determin-

istic” computation, leaving only probability calculations, i.e., sums and products,

and that it makes explicit the dependencies between the distributions resulting from

subcomputations. Sum-product networks [67] satisfy the former requirement. We

extend the formalism to factored sum-product networks in order to satisfy the latter:

A factored sum-product network (FSPN) over variables 𝑥1, . . . , 𝑥𝑑 is defined as a di-

rected graph with a uniquely labeled root node 𝑟. The internal nodes are sums and

products. The leaves are indicators 𝑥1, . . . , 𝑥𝑑 and �̄�1, . . . , �̄�𝑑, and reference nodes

(𝑦, �⃗�), where 𝑦 is another node and �⃗� a vector of indicator values. Each edge (𝑖, 𝑗)

from a sum node 𝑖 has a non-negative weight 𝑤𝑖𝑗.

Let Ch(𝑦) denote the children of node 𝑦. The value 𝒱(𝑦, �⃗�) of a node 𝑦 is defined as∑︀
𝑧∈Ch(𝑦)𝑤𝑦𝑧𝒱(𝑧, �⃗�) if 𝑦 is a sum, as

∏︀
𝑧∈Ch(𝑦) 𝒱(𝑧, �⃗�) if 𝑦 is a product, as 1�⃗�𝑗=𝑥𝑗

if 𝑦 is

an indicator 𝑥𝑗, and as 𝒱(𝑧, �⃗�) if 𝑦 is a reference (𝑧, �⃗�). We denote the factored sum-

product network 𝐹 as a function of the indicator variables �⃗� = (𝑥1, . . . , 𝑥𝑑, �̄�1, . . . , �̄�𝑑)

by 𝐹 (�⃗�) = 𝒱(𝑟, �⃗�). For any given �⃗�, the value of the FSPN is the solution to the

system of equations 𝐹 (�⃗�) (if a unique solution exists).

We use FSPNs to describe marginal distributions and indicators to query the

probabilities of marginal values. To simplify notation, we write indicators as 1𝑣,

denoting the 𝑥𝑖 corresponding to value 𝑣. We write reference nodes as 𝑟 :𝑣, denoting

(𝑟, [0, 0, . . . , 0, 1, 0, . . . , 0]), where the only indicator entry that is 1 corresponds to

value 𝑣. Negated indicators 𝑥𝑖 are not used by our algorithm.

In the following, we refer to “root nodes” in addition to the node types introduced

above. These nodes always have exactly one child and can hence be of either type sum

97

�

� �

� �
1F 1T

1T 1Fr2 : F r2 : T

r1

�

� �

� �
1F 1T

1T 1Fr1 : F r1 : T

r2

0.4 0.6

0.8 0.2 1.01.0

0.4 0.6

1.01.00.3 0.7

(define (game player)
(if (flip .6)

(not (game (not player)))
(if player

(flip .2)
(flip .7))))

(game true)

True False

M
ar

gi
n
al

p
ro

b
ab

il
it
y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pr1:T = .4 · .2+ .6 ·pr2:F

pr1:F = .4 · .8+ .6 ·pr2:T

pr2:T = .4 · .7+ .6 ·pr1:F

pr2:F = .4 · .3+ .6 ·pr1:F

(game true) (game false)

Figure 5-3: An example of applying the Dynamic Programming algorithm to a simple
Church program. The program is compiled to a factored sum-product network, which
directly corresponds to a system of equations that can be solved to infer the marginal
distribution.

98

or product. The networks we build are sets of trees. Each node will be associated

with a unique (ancestor) root node. Root nodes will correspond to subproblems.

One of these root nodes is the root node referred to in the definition of a FSPN;

it corresponds to the overall problem of computing the marginal distribution of the

starting state of the given probabilistic program. In the following illustration of the

process our algorithm uses to build a FSPN, we depict in addition to the previously

built node 𝑛prev and the weight of the edge from this node to the current node, 𝑤prev,

the root node 𝑟 that is associated with the previous and current node.

5.4.2 Algorithm

The algorithm proceeds in three steps. Figure 5-3 shows the result of applying each

of the steps to a simple self-recursive program.

1. Compile program to FSPN.

We initialize the FSPN with a single node 𝑟. Our algorithm maintains a queue

of tasks, each of which is a tuple of a thunk 𝑓 (a function without arguments), a

previous node 𝑛prev, and an edge weight 𝑤prev (a probability). The queue is initialized

to a task for the first interpreter call, (𝜆.ℐ(𝑠), 𝑟, 1). While the queue is not empty,

the algorithm takes the first task in the queue and evaluates the function call 𝑓().

There are three types of values that this function call can return: random choices,

terminal values, and subcalls. We manipulate the FSPN and queue depending on

the type of this value:

A random choice is a tuple (𝑐, �⃗�, 𝑝) of a continuation 𝑐, a list of values �⃗�, and a

list of probabilities 𝑝. The continuation 𝑐 is a formal object that captures the current

state of the computation; it can be called with a value to resume evaluation. �⃗� and

𝑝 specify the distribution of the random choice where we interrupted evaluation. We

99

modify the FSPN by connecting a sum node
∑︀

to 𝑛prev using 𝑤prev:

r

nprev

wprev

�

r

nprev

wprev

For each value-probability pair, we then add to the queue the task of exploring

𝑐(𝑣) with previous node
∑︀

and edge weight 𝑝. This reflects the fact that the marginal

probability of any value under the current subproblem 𝑟 is the sum of the probabilities

of this value being returned for each of the ways of proceeding from the current

program state, weighted by the probability of choosing each such way.

A terminal value 𝑣 is treated depending on whether it is a new value for current

root node 𝑟 or whether it has been encountered before. If it has been encountered

before, we simply add an indicator node for this variable to the FSPN, reflecting

that for a program state that directly returns value 𝑣, the marginal probability is 1

for this value and 0 otherwise:

r

v

nprev

wprev

r

nprev

wprev

If we encounter 𝑣 for the first time under root node 𝑟, this means that we just

learned something about the set of support values of the subproblem corresponding

to 𝑟. If this subproblem is used elsewhere, new parts of the program’s state space just

100

became accessible to us. To store where a subproblem is used, we associate a list of

callbacks with each root node. A callback is a pair of a node 𝑛 (the node corresponding

to the program state that referred to 𝑟’s subproblem) and a continuation 𝑐 (for

proceeding from that program state, given a return value for 𝑟’s subproblem). Given

a new value 𝑣, we can build graph structure and store a queue entry for each such

callback, reflecting that it is possible to continue from 𝑛 with the marginal probability

of 𝑣 under 𝑟. For every callback (𝑛𝑖, 𝑐𝑖), we add a product node
∏︀

𝑖 and a reference

node 𝑟 : 𝑣 under node 𝑛𝑖, and add to the queue the task of exploring 𝑐𝑖(𝑣) with

previous node
∏︀

𝑖:

r

v

n1

�
1

r : v

nprev

wprev

r

nprev

wprev

nn. . . n1 nn. . .

�
n

r : v

Callbacks (n1,c1), . . . , (nn ,cn)
associated with r .

A subcall is a pair of a continuation 𝑐 and an interpreter argument 𝑠. This is

where we share repeated subcomputations: depending on whether we have seen 𝑠

before or not, we proceed to explore this subcall and build graph structure, otherwise

we simply refer to existing structure.

If we encounter 𝑠 for the first time, we connect a sum node
∑︀

to 𝑛prev, reflecting

that the probability of any marginal value under 𝑟 will be a sum of the probability of

this value under all ways of continuing using different return values from subproblem

𝑠, weighted by the probability of these return values. We also add a new root node

𝑟𝑆 to the graph which represents the subproblem 𝑠 and its marginal distribution:

101

�

r

nprev

wprev

r

nprev

wprev

rS

We add to the queue the task of exploring the interpreter call ℐ(𝑠) with previous

node 𝑟𝑆, and add (
∑︀
, 𝑐) to the callbacks of 𝑟𝑆 such that graph structure under

∑︀
will be built if marginal values for ℐ(𝑠) are found.

If we have seen the interpreter argument 𝑠 before, we also add a sum node
∑︀

under 𝑛prev, but then look up the existing root node 𝑟𝑆 for subproblem 𝑆. If marginal

values for this subproblem are already known, we can immediately build graph struc-

ture under
∑︀

that refers to the marginal probability of these values, and we can

explore the current continuation 𝑐 using these values. For each known return value

𝑣𝑖 supported by 𝑆, we build a product node
∏︀

𝑖 and reference node 𝑟𝑆 : 𝑣𝑖 under
∑︀

and add to the queue the task of exploring 𝑐(𝑣𝑖) with previous node
∏︀

.

r

nprev

wprev

rS

�

r

nprev

wprev

�

rS :v1

1v1 1vn. . .

rS

1v1 1vn. . .

. . .
�

rS :vn

v1 . . . vn are values in the
support of subcomputation S.

As before, we also add (
∑︀
, 𝑐) to the callbacks of 𝑟𝑆 in order to continue building

graph structure under
∑︀

if more marginal values of 𝑟𝑆 are found in the future.

102

This process terminates once the queue is empty. Alternatively, it is possible to

bound the graph size, which results in lower bounds on the true marginal probabili-

ties.

2. Convert FSPN to equations.

Following the value equations given in Section 5.4.1, we can directly convert a

factored sum-product network into a system of polynomial equations. In addition, it

is sometimes possible to reduce the time spent in the next step by applying a simple

substitution-based equation simplifier.

3. Solve equations to get marginal distribution.

For probabilistic programs, the generated system of equations tends to be sparse,

reflecting the fact that most interpreter calls that occur within the possible executions

of a program do not depend on most other calls. We therefore cluster the equations

into strongly connected components and solve the clusters of equations in topological

order. Computing a topological order of strongly connected components is linear

in the size of the graph [91]. By solving in topological order we know that all

probabilities required to compute the solution of a component have been computed

once we reach this component. To solve components, we use fixed-point iteration

and Newton’s method. Exploring the use of other solution methods is a potential

venue for future performance improvements.

In sum, the method described here involves creating an intermediate representa-

tion, a FSPN, from a probabilistic program, which can then be efficiently solved to

compute the required distribution. This method often makes nested query models

useful in practice: as mentioned before, we have used it for all of the examples in

Chapter 4.

103

5.4.3 Technical ingredients

Algorithm 5-1 shows BuildFSPN, the algorithm described in the previous section.

This procedure takes as arguments an interpreter in factored coroutine form and an

initial interpreter argument 𝑥init. The algorithm steps through all possible execution

paths while building the corresponding factored sum-product network, and avoiding

duplicate evaluation of subproblems. We now describe three ingredients for this

procedure—the task queue, constant-time subcall identification, and factorization

grain.

Task queue. In programs with self-recursive calls, the exploration order of

different execution paths can be highly constrained. For example, in order to evaluate

the first if-branch of (game true) in Figure 5-1, we need to know at least one of

the return values of (game (not true)), but these in turn depend on the return

values of (game true). In order to let program exploration be guided by what return

values are known, we maintain a map terminals, which maps each root node to all

known terminal values reachable from it, and a map callbacks, which maps each

root node to a list of callbacks. A callback is a pair of a node 𝑛 and a continuation

𝑐. When a new terminal 𝑣 is found below a root node associated with callback (𝑛, 𝑐),

the call 𝑐(𝑣) is added to the task queue and used to continue evaluation and network

building in the original context.

Constant-time subcall identification. At each subcall, we need to determine

whether the subcall is new or whether it has already been assigned a FSPN node.

For the algorithm to have constant-time overhead over steps of the underlying inter-

preter, it is crucial that this computation takes place in constant time, i.e., it must

not depend on the size of the interpreter arguments. This suggests the use of an

underlying interpreter that represents values in a compressed way, e.g., using the

104

value-number technique described in Aho et al. [2]. In Algorithm 5-1, this happens

in subproblem, a map from interpreter arguments to network nodes.

Factorization grain. There are two ways to determine how much information

we share between subcalls: (1) While the interpreter may cede control at all recursive

calls, it does not need to for our algorithm to be valid. There is a continuum be-

tween building a fully factored FSPN and building a tree of random choices without

factorization. In our experiments, we have found it advantageous to factor at all

calls that correspond to applications of top-level functions. (2) What information

the underlying interpreter passes to its recursive calls affects sharing. In Church,

where interpreter arguments consist of expressions and environments, restricting en-

vironments to relevant environments is critical for efficient Dynamic Programming.

5.5 Empirical evaluation

In this section, we describe three situations where we have found generic Dynamic

Programming to be useful: teaching probabilistic models, research in computational

cognitive science, and analysis of multi-agent reasoning in game-theoretic situations.

We present an example for each of these situations and compare Dynamic Program-

ming to other inference algorithms.

In teaching probabilistic models, we usually aim to present modeling and

inference patterns before we discuss the internals of inference algorithms, since the

former provide motivation for the latter. The Probabilistic Models of Cognition tu-

torial by Goodman et al. [28] follows this approach and has been used in graduate

classes at MIT and Stanford. Since implementations of probabilistic programming

languages supply universal inference algorithms, it is possible to allow students to

experiment with models and solve exercises without requiring deep understanding of

105

Algorithm 5-1: Compiling probabilistic programs to factored sum-product
networks

procedure BuildFSPN(ℐ, 𝑥init)
𝐺 = Graph()
𝑟 = 𝐺.addNode(root)
𝑄 = [(𝜆.ℐ(𝑥init), 𝑟, 1.0)]
terminals, callbacks, subproblem = {}, {}, {}
while 𝑄 is not empty do

(𝑓, 𝑛prev, 𝑤prev) = 𝑄.pop()
𝑥 = 𝑓()
if 𝑥 is a value 𝑣 then

𝑛cur = 𝐺.addNode(indicator, 𝑣)
𝑟 = 𝐺.root[𝑛prev]
if 𝑣 /∈ terminals[𝑟] then

for all (𝑛′, 𝑐) in callbacks[𝑟] do
processTerminal(𝐺, 𝑄, 𝑟, 𝑣, 𝑛′, 𝑐)

end for
terminals[𝑟].add(𝑣)

end if
else if 𝑥 is a random choice (𝑐, �⃗�, 𝑝) then

𝑛cur = 𝐺.addNode(sum)
for all 𝑣, 𝑝 ∈ �⃗�, 𝑝 do

𝑄.enqueue(𝜆.𝑐(𝑣), 𝑛cur, 𝑝)
end for

else if 𝑥 is a subcall (𝑐, 𝑠) then
𝑛cur = 𝐺.addNode(sum)
if 𝑠 /∈ subproblem.keys() then

𝑟 = 𝐺.addNode(root)
subproblem[𝑠] = 𝑟
𝑄.enqueue(𝜆.ℐ(𝑠), 𝑟, 1.0)

else
𝑟 = subproblem[𝑠]
for all 𝑣 ∈ terminals[𝑟] do

processTerminal(𝐺, 𝑄, 𝑟, 𝑣, 𝑛cur, 𝑐)
end for

end if
callbacks[𝑟].add((𝑛cur, 𝑐))

end if
𝐺.addEdge(𝑛prev, 𝑛cur, 𝑤prev)

end whilereturn G
end procedure

procedure ProcessTerminal(𝐺, 𝑄, 𝑛root, 𝑣, 𝑛prev, 𝑐)
𝑛prod = 𝐺.addNode(product)
𝑛ref = 𝐺.addNode(ref, 𝑛root, 𝑣)
𝐺.addEdge(𝑛prev, 𝑛prod, 1.0)
𝐺.addEdge(𝑛prod, 𝑛ref , 1.0)
𝑄.enqueue(𝜆.𝑐(𝑣), 𝑛prod, 1.0)

end procedure

106

the underlying inference machinery.

However, the performance of existing “universal” algorithms strongly depends

on the structure of the models they are applied to, even for models with a very

small number of variables. Rejection sampling is only feasible as long as we do not

condition on low-probability events; MCMC requires that the distribution does not

have modes that are isolated with respect to the proposal structure of the algorithm.

Even in cases where sampling is feasible, it poses a challenge to students: it can

be difficult to distinguish approximation noise from systematic inference patterns.

For Metropolis-Hastings in the space of program traces [26, 101], no quantitative

analysis of mixing times exists so far, hence analysis of convergence can be difficult

even for experts; students’ lack of background knowledge exacerbates this effect.

For example, consider the rope-pulling game (Figure 5-4), a simple probabilistic

program without nested conditioning. Figure 5-5 shows how the L1 error between the

estimated and true posterior distribution develops over time for rejection, MCMC,

and Dynamic Programming. While MCMC has difficulty mixing between modes, and

while rejection computes estimates using very few samples due to a low-probability

condition, Dynamic Programming deterministically returns the exact answer after

about 6 seconds.

In cognitive science research, we wish to quickly explore a wide range of

model variations. While the model prototypes used in research have a tiny number

of variables compared to the state of the art in machine learning, they are struc-

turally complex and use features such as mutual recursion, nested conditioning, and

stochastic higher-order functions. Probabilistic programming makes it possible to

explore this space without building custom inference algorithms.

The caveat that the performance of current sampling-based algorithms strongly

depends on models, even in small state spaces, applies here as well. For example,

107

(query

;; Generative model
(define team1 (list 0 1))
(define team2 (list 2 3))
(define strengths

(repeat 4 (𝜆 () (if (flip) 10 5))))
(define (strength person)

(list-ref strengths person))
(define (lazy person)

(flip (/ 1 3)))
(define (total-pulling team)

(sum
(map (𝜆 (person)

(if (lazy person)
(/ (strength person) 2)
(strength person)))

team)))
(define (winner team1 team2)

(if (< (total-pulling team1)
(total-pulling team2))
'team2
'team1))

;; Query expression
(list (strength 0) (strength 1))

;; Condition
(and

(eq? 'team1 (winner team1 team2))
. . .
(eq? 'team2 (winner team1 team2))))

Figure 5-4: The rope-pulling game, a simple generative model used in teaching prob-
abilistic modeling.

108

0 5 10 15 20 25

0.
0

0
.5

1.
0

1.
5

Time (s)

E
rr
or

Rejection
MCMC
DP

Figure 5-5: Convergence to true distribution for the rope-pulling model.
Each point represents the L1 error between the estimated and true distribution for a
given runtime and algorithm. While all algorithms eventually converge to the correct
distribution for this model used in teaching, the only algorithm that quickly provides
a precise answer is Dynamic Programming. In this example, MCMC has difficulty
mixing between modes. Rejection computes estimates using very few samples due to
a low-probability condition.

109

in Chapter 4 we proposed a model of language understanding based on the idea

that listeners assume that speakers choose their utterances approximately optimally,

and that listeners interpret an utterance by using Bayesian inference to “invert” this

model of the speaker. Figure 4-3 shows part of a model of this type that predicts an

interaction between the speaker’s state of knowledge and the listener’s interpretation

of scalar implicatures (e.g., “some” implies “not all”). Using Dynamic Programming,

the time it takes to compute the marginal distribution for this model grows lin-

early in the depth of recursive reasoning (Figure 5-6), whereas for current sampling

techniques, inference time grows exponentially.

Moreover, some of the model features that are of research interest do not easily fit

into the sampling framework. For example, in softmax-optimal decision-making, an

action 𝑎 is chosen according to exponentiated expected utility under a belief distribu-

tion 𝑃 (𝑠), i.e., 𝑃 (𝑎) ∝ exp
(︀
𝛼E𝑃 (𝑠)[𝑈(𝑎; 𝑠)]

)︀
. A direct translation into a probabilistic

language with sampling semantics seems to require additional programming con-

structs that reify distributions. Such constructs can be provided more easily in the

setting of exact inference.

The analysis of multi-agent reasoning in game-theoretic situations shares

many properties with cognitive science research, but places even more emphasis

on multiply nested conditioning. This commonly rules out existing sampling-based

algorithms. At the same time, enumeration is often not an option either, since

exploiting shared structure is critical in reducing the state space to tractable size: in

the analysis of multiple agents thinking about one another, we can share computation

between all agents, actual and counterfactual, that are modeled as being in the same

state of mind.

As a particularly difficult example, consider the Blue-Eyed Islanders puzzle, a

well-known problem in epistemic logic [90] that we already encountered in Section

110

1 2 3 4 5 6 7

1
2

3
4

5

Depth of recursive reasoning

T
im

e
(s
)

Figure 5-6: Increase in Dynamic Programming inference time as a function
of nested conditioning depth. For the language understanding model shown in
Figure 4-3, Dynamic Programming makes it possible to explore nested recursive con-
ditioning with linear growth of inference time in the depth of recursion. Each point
on the plot corresponds to a run of our algorithm on the model with a given depth.
For rejection and MCMC over rejection, expected inference time grows exponentially.

111

Number of islanders leaving (with announcement)

P
ro
b
a
b
il
it
y

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4

Day 1

0 1 2 3 4

Day 2

0 1 2 3 4

Day 3

0 1 2 3 4

Day 4

Figure 5-7: While the Blue-Eyed Islanders puzzle is challenging for all generic in-
ference algorithms, Dynamic Programming allows predictions for small population
sizes that are already intractable for MCMC and rejection. The figure shows results
for population size 4, all islanders blue-eyed: on the 4th day, it is highly likely that
all islanders decide to leave.

4.6. Results for a stochastic version of this puzzle are shown in Figure 5-7. The

difficulty of this model stems from the fact that each day, every islander reasons

about the reasoning of all of the other islanders on the previous day, and that their

reasoning must again include all islanders’ reasoning on the day before the previous

day, etc. However, due to the symmetry of the setup, all islanders with blue eyes

and all islanders without blue eyes do the same computation on any given day. Their

computations are merged by our algorithm, which makes exact inference feasible for

small populations.

5.6 Related work

The Dynamic Programming algorithm presented here is related to a wide range

of algorithms which use Dynamic Programming to reuse computation in natural

language processing, logic programming, and functional programming. For instance,

Klein and Manning [43] exploit strongly connected components to perform efficient

112

exact marginalization for PCFGs in a way similar to the present algorithm. It is also

known that, in general, exactly solving tasks such as marginalization for recursive

programs leads to systems of nonlinear equations (see, e.g., comments in [13]).

A review of the connections to the many individual algorithms in the literature

is beyond the scope of this work. Instead, we focus on three systems that provide

generic, exact inference algorithms for universal probabilistic (or weighted) modeling

languages: IBAL, PRISM, and Dyna.

The functional programming language IBAL [65] is the system most closely re-

lated to the present work. IBAL is a probabilistic variant of ML that provides an

exact marginalization algorithm for discrete probabilistic models, which is based on

a generalization of variable elimination. The graph used by this algorithm also ex-

ploits sharable subcomputations across the evaluation of the probabilistic program.

However, the present algorithm is more general than the IBAL algorithm in the

following sense: The IBAL algorithm relies on acyclic computation graphs; this is

equivalent to the requirement that the computation be evidence-finite [46]—there

must only be a finite number of computations which can give rise to the observed

evidence. By contrast, our algorithm handles many cases of evidence-infinite com-

putation. For example, the simple recursive program shown in Figure 5-1, which has

finite support {true, false} but an infinite number of computations which give rise

to each support value, cannot be marginalized by IBAL, but is correctly handled by

our algorithm. Practical examples of such evidence-infinite computations include the

nested-query models for multi-agent reasoning that we have described above.

PRISM [72] is another system similar in spirit to the present work. PRISM is a

probabilistic generalization of Prolog, which provides a generic inference algorithm

based on Dynamic Programming. PRISM is able to recover many standard algo-

rithms (e.g., the inside-outside algorithm for PCFG estimation), but like IBAL, it

113

cannot handle evidence-infinite computations.

Dyna [13] takes a somewhat different approach. Dyna is a programming language

for expressing weighted deductive logic programs. Dyna makes use of generalizations

of parsing-as-deduction [79] and semi-ring parsing [22] to compile weighted logic

programs into highly optimized Dynamic Programs. Dyna differs from our algorithm

in the target level of abstraction. Our algorithm is focused on the problem of rapid

prototyping of models for which no standard Dynamic Programming algorithm exists.

The programmer simply provides an interpreter, and our algorithm automatically

exploits whatever sharing is exposed by the structure of the recursive calls made

in the process of computing the marginal distribution for a particular model. By

contrast, Dyna is a language for abstractly expressing specific Dynamic Programming

algorithms and compiling these algorithms to highly efficient code. It allows the

programmer lower-level control over algorithm specification, but it also requires the

programmer to specify these algorithmic details.

5.7 Conclusion

We have developed a Dynamic Programming algorithm for exact inference in proba-

bilistic programs. We have illustrated how this algorithm aids the use of probabilistic

programs in teaching and research. Future work includes incorporating techniques

from other approaches to Dynamic Programming (such as evidence propagation from

IBAL, and efficient code generation from Dyna) and exploring techniques for approx-

imate Dynamic Programming.

Exact inference will probably not scale to models with realistic state spaces.

This poses the practical question of finding approximate inference algorithms that

work in the setting of nested queries, and the scientific question of understanding how

114

humans cope with the same. For some versions of these problems, scalable algorithms

have already been introduced; for example, Monte Carlo tree search for playing

the board game Go [44]. It may be possible to construct inference algorithms for

probabilistic programs that reduce to such known algorithms in restricted settings.

Conversely, studying the psychological process of inference—which may implicate

parallel processing, simulation, and significant resource bounds—may suggest new

algorithms to solve the engineering challenges of inference.

115

116

Chapter 6

Learning Stochastic Inverses

6.1 Introduction

Bayesian inference is computationally expensive. Even approximate, sampling-based

algorithms tend to take many iterations before they produce reasonable answers. In

contrast, human recognition of words, objects, and scenes is extremely rapid, often

taking only a few hundred milliseconds—only enough time for a single pass from per-

ceptual evidence to deeper interpretation. Yet human perception and cognition are

often well-described by probabilistic inference in complex models. How can we rec-

oncile the speed of recognition with the expense of coherent probabilistic inference?

How can we build systems, for applications like robotics and medical diagnosis, that

exhibit similarly rapid performance at challenging inference tasks?

One response to such questions is that these problems are not, and should not be,

solved from scratch each time they are encountered. Humans and robots are in the

setting of amortized inference: they have to solve many similar inference problems,

This chapter is based on Stuhlmüller et al. [85].

117

and can thus offload part of the computational work to shared precomputation and

adaptation over time. This raises the question of which kinds of precomputation

and adaptation are useful. There is substantial previous work on adaptive inference

algorithms, including Cheng and Druzdzel [11], Haario et al. [32], Ortiz and Kaelbling

[63], Roberts and Rosenthal [69]. While much of this work is focused on adaptation

for a single posterior inference, amortized inference calls for adaptation across many

different inferences. In this setting, we will often have considerable training data

available in the form of posterior samples from previous inferences; how should we

use this data to adapt our inference procedure?

We consider using training samples to learn the inverse structure of a directed

model. Posterior inference is the task of inverting a probabilistic model: Bayes’

theorem turns 𝑝(𝑑|ℎ) into 𝑝(ℎ|𝑑); vision is commonly understood as inverse graphics

[37] and, more recently, as inverse physics [71, 95]; and conditional inference in

probabilistic programs can be described as “running a program backwards” [e.g.,

99]. However, while this is a good description of the problem that inference solves,

conditional sampling usually does not proceed backwards step-by-step. We suggest

taking this view more literally and actually learning the inverse conditionals needed

to invert the model. For example, consider the Bayesian network shown in Figure

6-1. In addition to the default “forward” factorization shown on the left, we can

consider an “inverse” factorization shown on the right. Knowing the conditionals for

this inverse factorization would allow us to rapidly sample the latent variables given

an observation. In this chapter, we will explore what these factorizations look like

for Bayesian networks, how to learn them, and how to use them to construct block

proposals for MCMC.

118

Gamma Gaussian

Illumination Reflectance

Luminance

Observation

Gamma Gaussian

Illumination Reflectance

Luminance

Observation

−10 0 10 20 30

−1
0

0
10

20
30

luminance

(n
oi

si
fy

 lu
m

in
an

ce
)

−4 −2 0 2 4 6−2
0−

10
 0

 1
0

20
 3

0

 0
 2

 4
 6

 8
10

reflectance
illu

m
in

at
io

n

lu
m

in
an

ce

O
bs
er
va
tio
n

Luminance

Reflectance
Ill
um
in
at
io
n

Lu
m
in
an
ce

Figure 6-1: A Bayesian network modeling brightness constancy in visual perception,
a possible inverse factorization, and two of the local joint distributions that determine
the inverse conditionals.

119

6.2 Inverse factorizations

Let 𝑝 be a distribution on latent variables 𝑥 = (𝑥1, . . . , 𝑥𝑚) and observed variables

𝑦 = (𝑦1, . . . , 𝑦𝑛). A Bayesian network 𝐺 is a directed acyclic graph that expresses

a factorization of this joint distribution in terms of the distribution of each node

conditioned on its parents in the graph:

𝑝(𝑥, 𝑦) =
𝑚∏︁
𝑖=1

𝑝(𝑥𝑖|pa𝐺(𝑥𝑖))
𝑛∏︁

𝑗=1

𝑝(𝑦𝑗|pa𝐺(𝑦𝑗))

When interpreted as a generative (causal) model, the observations 𝑦 typically depend

on a non-empty set of parents, but are not themselves parents of any nodes.

In general, a distribution can be represented using many different factorizations.

We say that a Bayesian network 𝐻 expresses an inverse factorization of 𝑝 if the

observations 𝑦 do not have parents (but may themselves be parents of some 𝑥𝑖):

𝑝(𝑥, 𝑦) = 𝑝(𝑦)
𝑚∏︁
𝑖=1

𝑝(𝑥𝑖|pa𝐻(𝑥𝑖))

As an example, consider the forward and inverse networks shown in Figure 6-1.

We call the conditional distributions 𝑝(𝑥𝑖|pa𝐻(𝑥𝑖)) stochastic inverses, with inputs

pa𝐻(𝑥𝑖) and output 𝑥𝑖. If we could sample from these distributions, we could produce

samples from 𝑝(𝑥|𝑦) for arbitrary 𝑦, which solves the problem of inference for all

queries with the same set of observation nodes.

In general, there are many possible inverse factorizations. For each latent node,

we can find a factorization such that this node does not have children. This fact will

be important in Section 6.4 when we resample subsets of inverse graphs. Algorithm

6-1 gives a heuristic method for computing an inverse factorization given Bayes net

120

Algorithm 6-1: Heuristic inverse factorization
Input: Bayesian network 𝐺 with latent nodes 𝑥 and observed nodes 𝑦; desired leaf

node 𝑥𝑖
Output: Ordered inverse graph 𝐻
1: order 𝑥 such that nodes close to 𝑦 are first, leaf node 𝑥𝑖 is last
2: initialize 𝐻 to empty graph
3: add nodes 𝑦 to 𝐻
4: for node 𝑥𝑗 in 𝑥 do
5: add 𝑥𝑗 to 𝐻
6: set pa𝐻(𝑥𝑗) to a minimal set of nodes in 𝐻 that d-separates 𝑥𝑗 from the

remainder of 𝐻 based on the graph structure of 𝐺
7: end for

𝐺, observation nodes 𝑦, and desired leaf node 𝑥𝑖. We compute an ordering on the

nodes of the original Bayes net from observations to leaf node. We then add the

nodes in order to the inverse graph, with dependencies determined by the graph

structure of the original network.

In the setting of amortized inference, past tasks provide approximate posterior

samples for the corresponding observations. We therefore investigate learning in-

verses from such samples, and ways of using approximate stochastic inverses for

improving the efficiency of solving future inference tasks.

6.3 Learning stochastic inverses

It is easy to see that we can estimate conditional distributions 𝑝(𝑥𝑖|pa𝐻(𝑥𝑖)) using

samples 𝑆 drawn from the prior 𝑝(𝑥, 𝑦). For simplicity, consider discrete variables

and an empirical frequency estimator:

𝜃𝑆(𝑥𝑖|pa𝐻(𝑥𝑖)) =
|{𝑠 ∈ 𝑆 : 𝑥

(𝑠)
𝑖 ∧ pa

(𝑠)
𝐻 (𝑥𝑖)}|

|{𝑠 ∈ 𝑆 : pa
(𝑠)
𝐻 (𝑥𝑖)|

121

Because 𝜃𝑆 is a consistent estimator of the probability of each outcome for each

setting of the parent variables, the following theorem follows immediately from the

strong law of large numbers:

Theorem 1. (Learning from prior samples) Let 𝐻 be an inverse factorization. For

samples 𝑆 drawn from 𝑝(𝑥, 𝑦), 𝜃𝑆(𝑥𝑖|pa𝐻(𝑥𝑖))→ 𝑝(𝑥𝑖|pa𝐻(𝑥𝑖)) almost surely as |𝑆| →

∞.

Samples generated from the prior may be sparse in regions that have high prob-

ability under the posterior, resulting in slow convergence of the inverses. We now

show that valid inverse factorizations allow us to learn from posterior samples as

well.

Theorem 2. (Learning from posterior samples) Let 𝐻 be an inverse factorization.

For samples 𝑆 drawn from 𝑝(𝑥|𝑦), 𝜃(𝑥𝑖|pa𝐻(𝑥𝑖)) → 𝑝(𝑥𝑖|pa𝐻(𝑥𝑖)) almost surely as

|𝑆| → ∞ for values of pa𝐻(𝑥𝑖) that have positive probability under 𝑝(𝑥|𝑦).

Proof. For values pa𝐻(𝑥𝑖) that are not in the support of 𝑝(𝑥|𝑦), 𝜃(𝑥𝑖|pa𝐻(𝑥𝑖)) is

undefined. For values pa𝐻(𝑥𝑖) in the support, 𝜃(𝑥𝑖|pa𝐻(𝑥𝑖)) → 𝑝(𝑥𝑖|pa𝐻(𝑥𝑖), 𝑦) al-

most surely. By definition, any node in a Bayesian network is independent of its

non-descendants given its parent variables. The nodes 𝑦 are root nodes in 𝐻 and

hence do not descend from 𝑥𝑖. Therefore, 𝑝(𝑥𝑖|pa𝐻(𝑥𝑖), 𝑦) = 𝑝(𝑥𝑖|pa𝐻(𝑥𝑖)) and the

theorem holds.

Theorem 2 implies that we can use posterior samples from one observation set

to learn inverses that apply to all other observation sets—while samples from 𝑝(𝑥|𝑦)

only provide global estimates for the given posterior, it is guaranteed that the local

estimates created by the procedure above are equivalent to the query-independent

conditionals 𝑝(𝑥𝑖|pa𝐻(𝑥𝑖)). In addition, we can combine samples from distributions

122

Algorithm 6-2: K-nearest neighbor density predictor
Input: Variable index 𝑖, inverse inputs 𝑧, samples 𝑆, number of neighbors 𝑘
Output: Sampled value for node 𝑥𝑖
1: retrieve 𝑘 nearest pairs (𝑧(1), 𝑥

(1)
𝑖), . . . , (𝑧(𝑘), 𝑥

(𝑘)
𝑖) in 𝑆 based on distance to 𝑧

2: construct density estimate 𝑞 on 𝑥(1)𝑖 , . . . , 𝑥
(𝑘)
𝑖

3: sample from 𝑞

conditioned on several different observation sets to produce more accurate estimates

of the inverse conditionals.

In the discussion above, we can replace 𝜃 with any consistent estimator of 𝑝(𝑥𝑖|pa𝐻(𝑥𝑖)).

We can also trade consistency for faster learning and generalization. This framework

can make use of any supervised machine learning technique that supports sampling

from a distribution on predicted outputs. For example, for discrete variables we can

employ logistic regression, which provides fast generalization and efficient sampling,

but cannot, in general, represent the posterior exactly. Our choice of predictor can be

data-dependent—for example, we can add interaction terms to a logistic regression

predictor as more data becomes available.

For continuous variables, consider a predictor based on k-nearest neighbors that

produces samples as follows (Algorithm 6-2): Given new input values 𝑧, retrieve the

𝑘 previously observed input-output pairs that are closest to the current input values.

Then, use a consistent density estimator to construct a density estimate on the

nearby previous outputs and sample an output 𝑥𝑖 from the estimated distribution.

Showing that this estimator converges to the true conditional density 𝑝(𝑥|𝑧) is

more subtle. If the conditional densities are smooth in the sense that:

∀𝜀 > 0 ∃𝛿 > 0 : ∀𝑧1, 𝑧2 𝑑(𝑧1, 𝑧2) < 𝛿 ⇒ 𝐷KL(𝑝(𝑥|𝑧1), 𝑝(𝑥|𝑧2)) < 𝜀

123

then we can achieve any desired accuracy of approximation by assuring that the

nearest neighbors used all lie within a 𝛿-ball, but that the number of neighbors goes

to infinity. We can achieve this by increasing 𝑘 slowly enough in |𝑆|. The exact

rate at which we may increase 𝑘 depends on the distribution and may be difficult to

determine.

6.4 Inverse MCMC

We have described how to compute the structure of inverse Bayes nets, and how to

learn the associated conditional distributions and densities from prior and posterior

samples. This produces fast, but possibly biased recognition models. To get a

consistent estimator, we use these recognition models as part of a Metropolis-Hastings

scheme that, as the amount of training data grows, converges to Gibbs sampling for

proposals of size 1, to blocked-Gibbs for larger proposals, and to perfect posterior

sampling for proposals of size |𝐺|.

We propose the following Inverse MCMC procedure (Algorithm 6-3): Offline,

use Algorithm 6-1 to compute an inverse graph for each latent node and train each

local inverse in this graph from (posterior or prior) samples. Online, run Metropolis-

Hastings with the proposal mechanism shown in Algorithm 6-4, which resamples a

set of up to 𝑘 variables using the trained inverses1. With little training data, we will

want to make small proposals (small 𝑘) in order to achieve a reasonable acceptance

rate; with more training data, we can make larger proposals and expect to succeed.

Theorem 3. Let 𝐺 be a Bayesian network, let 𝜃 be a consistent estimator (for

inverse conditionals), let {𝐻𝑖}𝑖∈1..𝑚 be a collection of inverse graphs produced using

1In a setting where we only ever resample up to 𝑘 variables, we only need to estimate the relevant
inverses, i.e., not all conditionals for the full inverse graph.

124

Algorithm 6-1, and assume a source of training samples (prior or posterior) with

full support. Then, as training set size |𝑆| → ∞, Inverse MCMC with proposal size

𝑘 converges to block-Gibbs sampling where blocks are the last 𝑘 nodes in each 𝐻𝑖.

In particular, it converges to Gibbs sampling for proposal size 𝑘 = 1 and to exact

posterior sampling for 𝑘 = |𝐺|.

Proof. We must show that proposals are made from the conditional posterior in the

limit of large training data. Fix an inverse 𝐻, and let x be the last 𝑘 variables

in 𝐻. Let pa𝐻(x) be the union of 𝐻-parents of variables in x that are not them-

selves in x. By construction according to Algorithm 6-1, pa𝐻(x) form a Markov

blanket of x (that is, x is conditionally independent of other variables in 𝐺, given

pa𝐻(x)). Now the conditional distribution over x factorizes along the inverse graph:

𝑝(x|pa𝐻(x)) =
∏︀|𝐻|

𝑖=𝑘 𝑝(𝑥𝑖|pa𝐻(𝑥𝑖)). But by Theorems 1 and 2, the estimators 𝜃

converge, when they are defined, to the corresponding conditional distributions,

𝜃(𝑥𝑖|pa𝐻(𝑥𝑖))→ 𝑝(𝑥𝑖|pa𝐻(𝑥𝑖)); since we assume full support, 𝜃(𝑥𝑖|pa𝐻(𝑥𝑖)) is defined

wherever 𝑝(𝑥𝑖|pa𝐻(𝑥𝑖)) is defined. Hence, using the estimated inverses to sequentially

sample the x variables results, in the limit, in samples from the conditional distribu-

tion given remaining variables. (Note that, in the limit, these proposals will always

be accepted.) This is the definition of block-Gibbs sampling. The special cases of

𝑘 = 1 (Gibbs) and 𝑘 = |𝐺| (posterior sampling) follow immediately.

Instead of learning the 𝑘=1 “Gibbs” conditionals for each inverse graph, we can

often precompute these distributions to “seed” our sampler. This suggests a boot-

strapping procedure for amortized inference on observations 𝑦(1), . . . , 𝑦(𝑡): first, pre-

compute the “Gibbs” distributions so that 𝑘=1 proposals will be reasonably effective;

then iterate between training on previously generated approximate posterior samples

and doing inference on the next observation. Over time, increase the size of proposals,

125

Algorithm 6-3: Inverse MCMC
Input: Prior or posterior samples 𝑆
Output: Samples 𝑥(1), . . . , 𝑥(𝑇)

Offline (train inverses):
1: for 𝑖 in 1 . . .𝑚 do
2: 𝐻𝑖 ← from Algorithm 6-1
3: for 𝑗 in 1 . . .𝑚 do
4: train inverse 𝜃𝑆(𝑥𝑗|pa𝐻𝑖

(𝑥𝑗))
5: end for
6: end for

Online (MH with inverse proposals):
1: for 𝑡 in 1 . . . 𝑇 do
2: 𝑥′, 𝑝fw, 𝑝bw from Algorithm 6-4
3: 𝑥← 𝑥′ with MH acceptance rule
4: end for

Algorithm 6-4: Inverse MCMC proposer
Input: State 𝑥, observations 𝑦, ordered

inverse graphs {𝐻𝑖}𝑖∈1..𝑚, proposal
size 𝑘max, inverses 𝜃

Output: Proposed state 𝑥′, forward and
backward probabilities 𝑝fw and 𝑝bw

1: 𝐻 ∼ Uniform({𝐻𝑖}𝑖∈1..𝑚)
2: 𝑘 ∼ Uniform({0, 1, . . . , 𝑘max − 1})
3: 𝑥′ ← 𝑥
4: 𝑝fw, 𝑝bw ← 0
5: for 𝑗 in 𝑛− 𝑘, . . . , 𝑛 do
6: let 𝑥𝑙 be 𝑗th variable in 𝐻
7: 𝑥′𝑙 ∼ 𝜃(𝑥𝑙|pa𝐻(𝑥′𝑙))
8: 𝑝fw ← 𝑝fw · 𝑝𝜃(𝑥′𝑙|pa𝐻(𝑥′𝑙))
9: 𝑝bw ← 𝑝bw · 𝑝𝜃(𝑥𝑙|pa𝐻(𝑥𝑙))

10: end for

possibly depending on acceptance ratio or other heuristics.

For networks with nearly-deterministic dependencies, Gibbs may be unable to

generate training samples of sufficient quality. This poses a chicken-and-egg problem:

we need a sufficiently good posterior sampler to generate the data required to train

our sampler. To address this problem, we propose a simple annealing scheme: We

introduce a temperature parameter 𝑡 that controls the extent to which (almost-

)deterministic dependencies in a network are relaxed. We produce a sequence of

trained samplers, one for each temperature, by generating samples for a network with

temperature 𝑡𝑖+1 using a sampler trained on approximate samples for the network

with next-higher temperature 𝑡𝑖. Finally, we discard all samplers except for the

sampler trained on the network with 𝑡 = 0, the network of interest.

In the next section, we explore the practicality of such bootstrapping schemes as

well as the general approach of Inverse MCMC.

126

6.5 Experiments

We are interested in networks such that (1) there are many layers of nodes, with

some nodes far removed from the evidence, (2) there are many observation nodes,

allowing for a variety of queries, and (3) there are strong dependencies, making local

Gibbs moves challenging.

We start by studying the behavior of the Inverse MCMC algorithm with empiri-

cal frequency estimator on a 225-node rectangular grid network from the UAI 2008

inference competition. This network has binary nodes and approximately 50% deter-

ministic dependencies, which we relax to dependencies with strength .99. We select

the 15 nodes on the diagonal as observations and remove any nodes below, leaving a

triangular network with 120 nodes and treewidth 15 (Figure 6-2). We compute the

true marginals 𝑃 * using IJGP [55], and calculate the error of our estimates 𝑃 𝑠 as

error =
1

𝑁

𝑁∑︁
𝑖=1

1

|𝑋𝑖|
∑︁
𝑥𝑖∈𝑋𝑖

|𝑃 *(𝑋𝑖 = 𝑥𝑖)− 𝑃 𝑠(𝑋𝑖 = 𝑥𝑖)|.

We generate 20 inference tasks as sources of training samples by sampling values

for the 15 observation nodes uniformly at random. We precompute the “final” inverse

conditionals as outlined above, producing a Gibbs sampler when 𝑘=1. For each

inference task, we use this sampler to generate 105 approximate posterior samples.

Figures 6-3 and 6-5 show the effect of training the frequency estimator on 10

inference tasks and testing on a different task (averaged over 20 runs). Inverse

proposals of (up to) size 𝑘=20 do worse than pure Gibbs sampling with little training

(due to higher rejection rate), but they speed convergence as the number of training

samples increases. More generally, large proposals are likely to be rejected without

training, but improve convergence after training.

127

Figure 6-6 illustrates how the number of inference tasks influences error and

MH acceptance ratio in a setting where the total number of training samples is

kept constant. Surprisingly, increasing the number of training tasks from 5 to 15

has little effect on error and acceptance ratio for this network. That is, it seems

relatively unimportant which posterior the training samples are drawn from; we may

expect different results when posteriors are more sparse.

Figure 6-7 shows how different sources of training data affect the quality of the

trained sampler (averaged over 20 runs). As the strength of near-deterministic de-

pendencies increases, direct training on Gibbs samples becomes infeasible. In this

regime, we can still train on prior samples and on Gibbs samples for networks with

relaxed dependencies. Alternatively, we can employ the annealing scheme outlined

in the previous section. In this example, we take the temperature ladder to be

[.2, .1, .05, .02, .01, 0]—that is, we start by learning inverses for the relaxed network

where all CPT probabilities are constrained to lie within [.2, .8]; we then use these

inverses as proposers for MCMC inference on a network constrained to CPT proba-

bilities in [.1, .9], learn the corresponding inverses, and continue, until we reach the

network of interest (at temperature 0).

While the empirical frequency estimator used in the above experiments provides

an attractive asymptotic convergence guarantee (Theorem 3), it is likely to generalize

slowly from small amounts of training data. For practical purposes, we may be

more interested in getting useful generalizations quickly than converging to a perfect

proposal distribution. Fortunately, the Inverse MCMC algorithm can be used with

any estimator for local conditionals, consistent or not. We evaluate this idea on a

12-node subset of the network used in the previous experiments. We learn complete

inverses, resampling up to 12 nodes at once. We compare inference using a logistic

regression estimator with 𝐿2 regularization (with and without interaction terms)

128

Figure 6-2: Schema of the Bayes net structure used in experiment 1. Thick arrows
indicate almost-deterministic dependencies, shaded nodes are observed. The actual
network has 15 layers with a total of 120 nodes.

to inference using the empirical frequency estimator. Figure 6-9 shows the error

(integrated over time to better reflect convergence speed) against the number of

training examples, averaged over 300 runs. The regression estimator with interaction

terms results in significantly better results when training on few posterior samples,

but is ultimately overtaken by the consistent empirical estimator.

Next, we use the KNN density predictor to learn inverse distributions for the con-

tinuous Bayesian network shown in Figure 6-1. To evaluate the quality of the learned

distributions, we take 1000 samples using Inverse MCMC and compare marginals to

a solution computed by JAGS [66]. As we refine the inverses using forward sam-

ples, the error in the estimated marginals decreases towards 0, providing evidence

for convergence towards a posterior sampler (Figure 6-4).

To evaluate Inverse MCMC in more breadth, we run the algorithm on all binary

Bayes nets with up to 500 nodes that have been submitted to the UAI 08 inference

competition (216 networks). Since many of these networks exhibit strong determin-

ism, we train on prior samples and apply the annealing scheme outlined above to

generate approximate posterior samples. For training and testing, we use the evi-

129

0 10 20 30 40 50 60

0.
00

0.
10

0.
20

0.
30

Time (seconds)

E
rr

or
 in

 m
ar

gi
na

ls

Gibbs
Inverses (10x10)
Inverses (10x100)
Inverses (10x1000)

Figure 6-3: The effect of training on
approximate posterior samples for 10
inference tasks. As the number of
training samples per task increases,
Inverse MCMC with proposals of size
20 performs new inference tasks more
quickly.

1e+01 1e+02 1e+03 1e+04 1e+05

0.
00

0.
04

0.
08

Number of training samples

E
rr

or
 in

 m
ar

gi
na

ls

Inverses (kNN)

Figure 6-4: Learning an inverse dis-
tribution for the brightness constancy
model (Figure 6-1) from prior sam-
ples using the KNN density predictor.
More training samples result in bet-
ter estimates after the same number
of MCMC steps.

dence provided with each network. We compute the error in marginals as described

above for both Gibbs (proposal size 1) and Inverse MCMC (maximum proposal size

20). To summarize convergence over the 1200s of test time, we compute the area

under the error curves (Figure 6-8). Each point represents a single run on a single

model. We label different classes of networks. For the grid networks, grid-𝑘 denotes

a network with 𝑘% deterministic dependencies. While performance varies across

network classes—with extremely deterministic networks making the acquisition of

training data challenging—the comparison with Gibbs suggests that learned block

proposals frequently help.

Overall, these results indicate that Inverse MCMC is of practical benefit for learn-

130

Error in marginals

Log10(training samples per task)

M
ax

im
um

 p
ro

po
sa

l s
iz

e

5

10

15

20

25

30

1 2 3 4

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Acceptance ratio

Log10(training samples per task)

M
ax

im
um

 p
ro

po
sa

l s
iz

e

5

10

15

20

25

30

1 2 3 4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 6-5: Without training, big inverse proposals result in high error, as they are
unlikely to be accepted. As we increase the number of approximate posterior samples
used to train the MCMC sampler, the acceptance probability for big proposals goes
up, which decreases overall error.

ing block proposals in reasonably large Bayes nets and using a realistic amount of

training data (an amount that might result from amortizing over five or ten infer-

ences).

6.6 Related work

A recognition network [58] is a multilayer perceptron used to predict posterior

marginals. In contrast to our work, a single global predictor is used instead of

small, compositional prediction functions. By learning local inverses our technique

generalizes in a more fine-grained way, and can be combined with MCMC to provide

unbiased samples. Adaptive MCMC techniques such as those presented in Roberts

and Rosenthal [69] and Haario et al. [32] are used to tune parameters of MCMC

algorithms, but do not allow arbitrarily close adaptation of the underlying model

to the posterior, whereas our method is designed to allow such close approxima-

131

Acceptance ratio

Number of tasks

M
ax

im
um

 p
ro

po
sa

l s
iz

e

5

10

15

20

25

30

5 10 15

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Figure 6-6: For the network under con-
sideration, increasing the number of
tasks we train on has little effect on ac-
ceptance ratio (and error) if we keep the
total number of training samples con-
stant.

Prior
Gibbs
Relaxed Gibbs
Annealing

Prior
Gibbs
Relaxed Gibbs
Annealing

●

●

●

●

●

●

●

●

Determinism 0.95

Determinism 0.9999

0.05 0.10 0.15 0.20 0.25

Error by training source

Test error (after 10s)

Figure 6-7: For networks without hard
determinism, we can train on Gibbs
samples. For others, we can use prior
samples, Gibbs samples for relaxed net-
works, and samples from a sequence of
annealed Inverse samplers.

tion. A number of adaptive importance sampling algorithms have been proposed

for Bayesian networks, including Shachter and Peot [76], Cheng and Druzdzel [11],

Yuan and Druzdzel [103], Yu and Van Engelen [102], Hernandez et al. [35], Salmeron

et al. [70], and Ortiz and Kaelbling [63]. These techniques typically learn Bayes nets

which are directed “forward”, which means that the conditional distributions must

be learned from posterior samples, creating a chicken-and-egg problem. Because our

trained model is directed “backwards”, we can learn from both prior and posterior

samples. Gibbs sampling and single-site Metropolis-Hastings are known to converge

slowly in the presence of determinism and long-range dependencies. It is well-known

that this can be addressed using block proposals, but such proposals typically need

to be built manually for each model. In our framework, block proposals are learned

from past samples, with a natural parameter for adjusting the block size.

132

● ●
●

●

●

●
●

●

● ●

●●
●

●
●

●●

●
●

● ●
● ●

●
●

● ●

●● ●

●● ●

●

●
●●●●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●
●

●
● ●

●

●

●
●
●

●
●

● ●

●
●

●

●●
●

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Gibbs error integral

In
ve

rs
e

M
C

M
C

 e
rr

or
 in

te
gr

al

● grid−50
grid−75
grid−90
students
fs
bn2o

Figure 6-8: Each mark represents a sin-
gle run of a model from the UAI 08 in-
ference competition. Marks below the
line indicate that integrated error over
1200s of inference is lower for Inverse
MCMC than Gibbs sampling.

10 20 50 100 200 500

0.
0

0.
1

0.
2

0.
3

0.
4

Number of training samples

E
rr

or
 in

te
gr

al
 (

1s
)

Frequency estimator
Logistic regression (L2)
Logistic regression (L2 + ^2)

Figure 6-9: Integrated error (over 1s of
inference) as a function of the number of
samples used to train inverses, compar-
ing logistic regression with and without
interaction terms to an empirical fre-
quency estimator.

133

6.7 Conclusion

We have described a class of algorithms for the setting of amortized inference, based

on the idea of learning local stochastic inverses—the information necessary to “run

a model backward”. We have given simple methods for estimating and using these

inverses as part of an MCMC algorithm. In exploratory experiments, we have shown

how learning from past inference tasks can reduce the time required to estimate

quantities of interest. Much remains to be done to explore this framework. Based on

our results, one particularly promising avenue is to explore estimators that initially

generalize quickly (such as regression), but back off to a sound estimator as the

training data grows.

134

Chapter 7

Coarse-to-Fine Sequential Monte

Carlo

7.1 Introduction

Imagine watching a tennis tournament. Your visual system makes fast and accurate

inferences about the depth field (how far away are different patches?), the objects

(is that a ball or racket?), their trajectories, and many other properties of the scene.

A powerful intuition is that such feats of inference are enabled by coarse-to-fine

reasoning: first getting a rough sense of where the action is in the scene, how far

away it is, and so on; then refining this impression to pick out details. The appeal

of coarse-to-fine reasoning is manifold. First, there is introspection: When faced

with a complex reasoning task, it often helps to take a step back, try to understand

the big picture, and then focus on what seems most promising. The big picture

tends to have fewer moving parts, and its parts tend to be easier to understand.

This chapter is based on Stuhlmüller et al. [86].

135

2 8

10

3

1

1

1

1

3
2 5

21

Figure 7-1: Incremental coarsening reduces surprise in SMC. Particles (red) are
directed towards high-probability regions (light) step by step as we refine the state
space from coarse to fine. The numbers indicate how many particles are associated
with a particular state.

Neuroscience provides another angle: for instance, face processing in the high-level

visual cortex plausibly follows coarse-to-fine principles [21], and stereoscopic depth

perception similarly proceeds from large to small spatial scales [56]. Finally, there is

a rich set of existing applications of coarse-to-fine techniques for specific applications

in a diverse set of areas including physical chemistry [52], speech processing [88],

PCFG parsing [10], and machine translation [64]. Despite the success and appeal of

coarse-to-fine ideas, they have been difficult to apply in general settings. Here we

propose a system for deriving coarse-to-fine inference from any model written as a

probabilistic program. We do this by leveraging the program structure to transform

136

the initial program into a multi-level, coarse-to-fine program that can be used with

existing inference algorithms.

Probabilistic programming languages provide a universal and high-level repre-

sentation for probabilistic models, separating the burdens of modeling from those of

inference. Yet the difficulty of inference can grow quickly as the state space (number

of possible program executions) grows large. A widely-used technique for inference

in large state spaces is Sequential Monte Carlo (SMC), a class of algorithms based

on constructing a sequence of distributions, beginning with an easy-to-sample dis-

tribution and ending at the distribution of interest, with each distribution serving

as an importance sampler for the next. The success of SMC rests on the quality of

the approximating sequence. We present a generic method for deriving coarse-to-fine

sequences of approximating distributions from a probabilistic program.

Our approach can be seen as building a hierarchical model from an initial model,

where each stage of the hierarchy resolves more details of the state space than the

one before. Additionally, we augment each level of the hierarchy with a coarse

approximation to the evidence (implemented via heuristic factors), in order to specify

a useful conditional distribution at each level. In practice we create the hierarchical

model and heuristic factors simultaneously by specifying how to “lift” each element of

the program—elementary distributions, primitive functions, and constants—to the

coarser levels. The resulting model supports coarse-to-fine inference by SMC, where

the nth distribution in the sequence is simply the state space of the n-coarsest levels;

this implements inference for the original model correctly because, by construction,

the marginal distribution over the finest level is the original distribution.

Model transformations let us directly use existing sequential inference algorithms

to perform coarse-to-fine inference, rather than proposing a new inference algorithm

per se. This is in contrast to essentially all prior work on coarse-to-fine inference,

137

including Kiddon and Domingos [42] and Steinhardt and Liang [80]. One benefit

of this modular approach is that advances in SMC algorithms immediately yield

improvements to coarse-to-fine inference. Another benefit is the conceptual clarity

that comes from an explicit representation of the coarse-to-fine model.

In the following, we first review probabilistic programs and Sequential Monte

Carlo. We then describe our coarse-to-fine program transform and how it lifts random

variables, primitive functions, and factors to operate on multiple levels of abstrac-

tion. We apply this transform to three models in the domain of tracking partially

observable objects over time given visual information: a depth-from-disparity model,

a factorial hidden Markov model, and a model of visual scene understanding. We

show that it can significantly reduce inference time in each of these domains. Fi-

nally, we discuss in what circumstances our proposed coarse-to-fine approach is a

good fit, and outline research questions raised by this new approach to coarse-to-fine

inference.

7.2 Background

7.2.1 Probabilistic programming in WebPPL

We express probabilistic programs in WebPPL [24], a small probabilistic language

embedded in Javascript. This language is universal and feature-rich, so we expect the

techniques to generalize to other languages. In this language, all random choices are

marked by sample; the argument to sample is a distribution object (also called Elemen-

tary Random Primitive, or ERP), its return value a sample from this distribution.

Calls to functions such as flip(0.5) are shorthand for sample(bernoulliERP, [0.5]).

To enable probabilistic conditioning, the language supports factor statements.

138

The argument to factor is a score: a number that is added to the log-probability of

a program execution, thus increasing or decreasing its relative posterior probability.

This includes hard conditioning as a special case (scores 0 and −∞). Finally, the

language supports inference primitives such as ParticleFilter and MH (Metropolis-

Hastings). Each of these takes as an argument a thunk, that is, a stochastic function

that itself takes no arguments. And each of these computes or estimates the distri-

bution on return values of this thunk (its marginal distribution), taking into account

the re-weighting induced by factor statements.

Figure 7-2a shows a program that implements a simplified one-step version of

multiple object tracking: the noisily observed value 7 could have been produced by

either 𝑥 or 𝑦, each of which is uniformly chosen from {1, 2, . . . , 8}. The final panel

in Figure 7-1 shows the marginal distribution on [𝑥, 𝑦] for this program.

In probabilistic programs, the same syntactic variable can be used multiple times.

The prototypical example is the geometric distribution:

var geometric = 𝑓 () {

return flip (0.1) ? 0 : 1 + geometric ()

}

The call to flip(0.1) may occur an unbounded number of times. For many

purposes, it is necessary to distinguish and refer to these different calls. In the

context of MCMC, Wingate et al. [100] introduced a suitable naming scheme based

on stack addresses. The address of a random choice is a list of syntactic locations, one

for each function on the function call stack at the time when the random variable was

sampled. We will build on this scheme to associate corresponding random choices

on different levels of coarsening with each other, and use address in the following

to refer to the current stack address.

139

var noisyObserve = 𝑓 (obs){
var score =

-3*distance(obs , 7)
factor(score)

}

var model = 𝑓 (){
var x = sample(uniformERP)
var y = sample(uniformERP)
var observation =

flip (.5) ? x : y
noisyObserve(observation)
return [x, y]

}

(a) A probabilistic program

var noisyObserve = 𝑓 (obs){
var score =

-3*distance(obs , 7)
factor(score)

}

var model = 𝑓 (){
var x = sample(uniformERP)
var heuristicScore =

-distance(x, 7)
factor(heuristicScore)
var y = sample(uniformERP)
var observation =

flip (.5) ? x : y
noisyObserve(observation)
factor(-heuristicScore)
return [x, y]

}

(b) Rewritten using heuristic factors

Figure 7-2: Two probabilistic programs with the same marginal distribution (shown
in the final panel in Figure 7-1).

7.2.2 Sequential Monte Carlo

Suppose our target distribution is 𝑋 with probability mass function 𝑝. Importance

sampling generates samples from an approximating distribution 𝑌 (with probabil-

ity mass function 𝑞) and re-weights the samples to account for the difference be-

tween true and approximating using 𝑤(𝑥) = 𝑝(𝑥)/𝑞(𝑥). If we are interested in

some expectation 𝜓 = E𝑥∼𝑋 [𝑓(𝑥)], we can estimate it from samples 𝑦1, . . . , 𝑦𝑛 us-

ing 𝜓 =
∑︀𝑛

𝑖=1 𝑤(𝑦𝑖)𝑓(𝑦𝑖)/
∑︀𝑛

𝑖=1 𝑤(𝑦𝑖). To generate approximate samples from 𝑝(𝑥), we

resample from the set of weighted samples in proportion to the importance weights.

If we iterate this procedure with a sequence of approximating distributions 𝑞1, . . . , 𝑞𝑘,

we get Sequential Importance Sampling. If we resample at each stage, we get Sequen-

tial Importance Resampling. If we additionally apply MCMC “rejuvenation” steps at

140

each stage 𝑖 with a transition kernel that leaves the distribution 𝑞𝑖 invariant, we get

Sequential Monte Carlo.

For Sequential Importance Sampling, the sum of the KL divergences between suc-

cessive distributions controls the difficulty of sampling [18]. If we can sample from

the right coarse-grained distributions, we can reduce this difficulty, as illustrated in

Figure 7-1. With rejuvenation steps (SMC), the picture is more complex, but empir-

ically, it is still the case that distributions that are closer together in KL generally

make the sampling problem easier. In particular, we expect that good coarse-to-

fine sequences lead to better coverage of regions with high posterior probability, and

that they enable more efficient pruning of low-probability regions. A finite set of

fine-grained particles may not cover the entire region, which can lead to a situation

where all particles assign low probability to the next filtering step (particle decay).

A particle that has not been refined yet corresponds to distributions on fine-grained

states, thus each such particle can cover a bigger region [80]. Good coarse-to-fine

sequences can allow us to prune entire parts of the state space, only considering

refinements of abstract states that have sufficiently high posterior probability [42].

7.3 Algorithm

Given a probabilistic program, our algorithm builds a coarse-to-fine program with

the same marginal distribution as the original program, but with additional latent

structure corresponding to coarsened versions of the program.

We will assume that the user provides a coarsenValue function that describes

how values map to more abstract values. Iterating this function leads to levels of

coarsened values. Our goal then is to construct a version of the original program that

operates over values coarsened 𝑁 times. We will preserve the basic flow structure of

141

var liftedUniformERP = liftERP(uniformERP)
var liftedDistance = liftScorer(distance)

var noisyObserve = 𝑓 (obs){
var score = -3*lifted Distance(obs , 7)
lifted Factor(score)

}

var model = 𝑓 (){
store.base = getStackAddress ()
var x = lifted UniformERP ()
var y = lifted UniformERP ()
var observation = flip (0.5) ? x : y
noisyObserve(observation)
return [x, y]

}

var coarseToFineModel = 𝑓 (level){
store.level = level
var marginalValue = model ()
if (level === 0) {

return marginalValue
} else {

return coarseToFineModel(level - 1)
}

}

Figure 7-3: The coarse-to-fine model corresponding to the model in Figure 7-2a. This
model has the same marginal distribution as 7-2a and 7-2b, but samples it using the
hierarchical process shown in Figure 7-1. The functions liftERP, liftScorer, and
liftedFactor are described in Sections 7.3.5-7.3.7.

142

the program, and thus we only need to specify how each primitive construct in the

program is lifted to the space of coarsened values. The tricky part is to construct

these lifted components such that the final marginal distribution is preserved. We

use two ideas to accomplish this. First, we replace each unconditional elementary

distribution at a given location with a distribution that depends on the coarser value

of the same location, but such that marginalizing out this coarser value yields the

original distribution. Second, we treat lifted factors as only approximations useful

for guiding inference, which are then canceled by an extra factor inserted at the

next-finer level. With this scheme, only the finest-level factors contribute to the final

score. This scheme gives us flexibility over the lifting of primitive functions: values

of lifted primitive functions flow to heuristic factor statements, not to the program’s

return statement, hence lifted functions only need to have similar behavior to their

original; deviations will be corrected by the cancellation of factors.

In the next few subsections, we first introduce heuristic factors, then the inputs

that the program transform requires, how the model syntax is transformed, and

how each of the components of the lifted model works: constants, random variables,

factors, and primitive functions.

7.3.1 Heuristic factors

A heuristic factor is a factor that is introduced for the purpose of guiding incremental

inference algorithms such as particle filtering and best-first enumeration [24]. Its

distinguishing characteristic is that an equivalent, canceling factor is inserted at a

later position in the program in order to leave the program’s distribution invariant.

In other words, the pair of statements factor(s) and factor(-s) together has no effect

on the meaning of a model; its only effect is in controlling how inference algorithms

143

explore the state space.

For example, Figure 7-2b shows a way to rewrite the program in Figure 7-2a in

a way that initially assigns higher weight to program executions where 𝑥 is close to

the true observation 7. This is a heuristic, since—depending on the outcome of the

coin flip—it may be 𝑦 which is observed, in which case there is no pressure for 𝑥 to

be close to 7.

We will use heuristic factors to guide sampling on coarse levels towards high-

probability regions of the state space without changing the program’s distribution.

7.3.2 Prerequisites

The main inputs to the transform are a model, given as code for a probabilistic

program, and a pair of functions coarsenValue and refineValue.

The main constraint on the model is that all ERPs need to be independent, i.e.,

do not take parameters that depend on other ERPs. If the support of each ERP is

known, this can be achieved using a simple transform that replaces each dependent

ERP with a maximum-entropy ERP, and adds a factor that corrects the score. That

is, we transform

var x = sample(originalERP , params)

to

var x = sample(maxentERP)

factor(originalERP.score(x, params) -

maxentERP.score(x))

This transform leaves the model’s distribution unchanged and greatly simplifies

the coarsening of ERPs, but reduces the statistical efficiency of the model. This

statistical inefficiency can be addressed by merging sample and factor statements

144

into sampleWithFactor after the coarse-to-fine transform [24].

The model is annotated with the name of the main model function (which defines

the marginal distribution of interest) and a list of names of ERPs, constants, and

functions to be lifted (compound, primitive, score, and polymorphic; see below).

The main parameters that control the coarse distributions are the user-specified

functions coarsenValue and refineValue. The function coarsenValue maps a value to

a coarser value; the function refineValue maps a coarse value to a set of finer values.

To generate values on abstraction level 𝑖, we iterate the coarsenValue function 𝑖 times.

We require that the two functions are inverses in the sense that 𝑣 ∈ refineValue(𝑉)

⇔ coarsenValue(𝑣) = 𝑉 for all 𝑣 and 𝑉 .

This chapter does not address the task of finding good value coarsening functions.

Instead, we ask: if such a function is given, how can we use it to coarsen entire

programs so that we produce a sequence of coarse-to-fine models that is useful for

SMC?

7.3.3 Model transform

The transform adds a wrapper coarseToFineModel that calls the model once for each

coarsening level, from coarse to fine, each time setting the (dynamically scoped)

variable store.level (in the following, level) to the current level. The transform

also replaces all ERPs, primitive functions, and score functions with lifted versions

that act differently depending on level. The coarse models only affect the fine-

grained models through the side-effect of storing the values of their random choices

in store, which is used by the finer-grained models to conditionally sample their

random choices.

The syntactic transform itself proceeds as follow:

145

1. For each ERP, primitive and score function, insert the corresponding lifted

definition before the model definition. For example:

var liftedPlus = liftPrimitive(plus)

2. Rename all ERPs, primitive and score functions to their corresponding lifted

names in model and compound functions. For example, replace plus with

liftedPlus.

3. Wrap all constants. For example, replace 𝑐 with liftConstant(𝑐).

4. As the first statement in the model, store the current address, which is needed

to compute relative addresses of random choices and factors later on:

store.base = getStackAddress()

5. Add a wrapper coarseToFineModel that calls the model once for each coarsening

level (see Figure 7-3).

We will now describe the mechanisms behind lifted constants, random variables,

factors, and primitive functions.

7.3.4 Lifting constants

To lift a constant, we simply repeatedly coarsen it to the current level:

Algorithm 7-1: Lifting constants
procedure liftedConstant(𝑐)

for 𝑖=0; 𝑖 < level; 𝑖++ do
𝑐 = coarsenValue(𝑐)

end for
return 𝑐

end procedure

146

Algorithm 7-2: Lifting ERPs
procedure sampleLiftedERP(𝑒0, 𝑙)
𝑣1 = store[erpName(address, 𝑙 + 1)]
if 𝑣1 is undefined then

if 𝑙 is 0 then
return 𝑒0.sample()

else
return coarsenValue(sampleLiftedERP(𝑒0, 𝑙 − 1))

end if
else
�⃗� = refineValue(𝑣1)
𝑝 = �⃗�.map(𝜆(v){return getERPScore(𝑒0, 𝑣, 𝑙)})
return sampleDiscrete(�⃗�, 𝑝)

end if
end procedure

procedure liftERP(𝑒0)
𝑒1 = makeERP(𝜆(){sampleLiftedERP(𝑒0, level)})
return 𝜆(){
𝑣 = sample(𝑒1)
store[erpName(address, level)] = 𝑣
return 𝑣

}
end procedure

7.3.5 Lifting random variables

Let 𝐷0 be the domain of an ERP with distribution 𝑝0(𝑥), and let 𝐷𝑛 = cv𝑛(𝐷0) be

the set of values arrived at by repeatedly applying the coarsenValue function (written

cv for short). We would like to decompose the original distribution 𝑝0(𝑥) into a

sequence of conditional distributions 𝑞(𝑥𝑛|𝑥𝑛+1) for random variables 𝑥𝑛 ∈ 𝐷𝑛. If we

take:

𝑞(𝑥𝑛|𝑥𝑛+1) ∝
∑︁
𝑥0

𝑝(𝑥0)1cv𝑛(𝑥0)=𝑥𝑛∧cv(𝑥𝑛)=𝑥𝑛+1

147

and for the coarsest level, 𝑁 ,

𝑞(𝑥𝑁) =
∑︁
𝑥0

𝑝(𝑥0)1cv𝑁 (𝑥0)=𝑥𝑁

then it is clear that we preserve the marginal distribution on 𝑥0. That is:

𝑝(𝑥0) =
∑︁

𝑥1,...,𝑥𝑁

𝑞(𝑥0|𝑥1) · · · 𝑞(𝑥𝑁−1|𝑥𝑁)𝑞(𝑥𝑁).

Algorithm 7-2 shows how we implement sampling from such a decomposed ERP

at a given level. Note that to lookup the existing value at the next-coarser level we

identify random variables on different levels based on relative stack addresses (via

erpName); this is critical for models such as grammars with an unbounded number

of random choices. The implementation for computing the score of lifted ERPs is

analogous (although this score is not needed for pure particle filtering, so we omit

the details). Both are parameterized by a function getERPScore that estimates the

total probability of the equivalence class of values that map to a given coarse value.

These ERP scores for coarse values can be estimated by sampling refinements, via

user-specified scoring functions (as in Section 7.4.1), or using exact computation (as

in Section 7.4.2).

7.3.6 Lifting factors

We treat the lifted counterpart to factors as heuristic factors: the score on the next-

higher level is subtracted out on the current level. By canceling out these factors

when inference proceeds to finer-grained levels, we ensure that the overall distribution

of the model remains unchanged—ultimately, only the base-level factors count. This

incremental scoring process formalizes the intuition of increasing attention to detail

148

as we move down the abstraction ladder. Like random variables, we identify factors

based on relative stack addresses.

Algorithm 7-3: Lifting factors
procedure liftedFactor(𝑠)
𝑠1 = store[factorName(address, level+ 1)] ∨ 0
factor(𝑠− 𝑠1)
store[factorName(address, level)] = 𝑠

end procedure

7.3.7 Lifting primitive functions

When a primitive function 𝑓 is applied to a base-level value, it is deterministic. Now

we are interested in lifting primitive functions to operate on coarse values. However,

each coarse value corresponds to a set of base-level values. For different elements in

this set, 𝑓 may return different values. This suggests that lifted versions of 𝑓 may be

stochastic. We wish to preserve the marginal distribution of the entire program, but

since we treat coarse factors as canceling heuristics, we have some latitude in how to

lift the primitive functions.

Algorithm 7-4 shows one approach to the computation of such coarsened prim-

itives. This algorithm is parameterized by a function marginalize, which may be

implemented using exact computation, sampling, etc., and which may cache its com-

putations.

Scoring functions—i.e., functions that directly compute a score to be consumed

by factor—are a special case of primitive functions. We know that they return a

number, so instead of sampling from the return distribution, we can simply compute

the expected value. We find that this leads to more stable, and hence useful, heuristic

factors.

149

Algorithm 7-4: Lifting primitive functions
procedure liftPrimitive(𝑓)

return 𝜆(�⃗�){
𝑒 = marginalize(𝜆(){
�⃗�0 = �⃗�.map((uniformDraw ∘ refineValue)level)
𝑣 = 𝑓(�⃗�0)
return coarsenValuelevel(𝑣)

})
return sample(𝑒);

}
end procedure

Algebraic data type constructors are another special case. In many circumstances

(including Section 7.4.2), they can be treated as transparent with respect to coars-

ening. For example, it is frequently useful to define coarsenValue([𝑥1, 𝑥2, . . .]) as

equivalent to [coarsenValue(𝑥1), coarsenValue(𝑥2), . . .]. More generally, if a function

can apply to coarsened objects directly, it can be marked as polymorphic. In that

case, no lifting is necessary. For example, if we have a function that computes the

mean of a list of numbers, and if our coarsening maps lists of numbers to shorter

lists of numbers without changing their type, then we have the option to mark this

function as polymorphic.

7.4 Empirical evaluation

To evaluate the proposed technique, we apply it to three classes of models in the

domain of tracking partially observable objects over time given visual information:

first, an Ising model and its depth-from-disparity variation; second, a factorial hidden

Markov model for multiple object tracking; and third, a simple model of visual scene

understanding.

150

0 1000 2000 3000 4000 5000

0
20

0
40

0
60

0
80

0

n = 27, T = 1

Seconds

E
st

im
at

ed
 lo

g
Z

No coarsening
30 levels
90 levels

(a) Ising at low temperature (𝑇 = 1)

0 500 1500 2500 3500

−
50

0
50

10
0

15
0

n = 27, T = 2.39

Seconds

E
st

im
at

ed
 lo

g
Z

No coarsening
30 levels
90 levels

(b) Ising at the critical state (𝑇 = 2.39)

0 100 200 300 400 500

63
00

65
00

67
00

n = 10, m = 40, d = 15

Seconds

E
st

im
at

ed
 lo

g
Z

No coarsening
50 levels
100 levels

(c) Depth-from-disparity

Figure 7-4: Quantitative inference results for Markov Random Field models

151

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Figure 7-5: Coarsening the Ising model at the critical state (𝑇 = 2.39)

7.4.1 Markov Random Fields

A number of applications in physics, biology, and computer vision can be modeled as

Markov Random Fields (MRFs). These problems have in common that they specify

a global energy function which, by virtue of the Markov property, depends only on

the local neighborhoods of elements. Once this energy function is specified, it can

be difficult to minimize; specialized optimization algorithms have been developed for

particular domains [87], but there is no generally applicable solution.

The local neighborhood structure of the energy function, however, suggests that

a coarse-to-fine transformation may be useful: if neighborhoods are coarsened into

single representative values, then the energy can be minimized in this smaller space,

using heuristic factors to guide search in the original space. We do not claim that our

model transformation constitutes a solution in itself, but can be used in tandem with

other algorithms to effectively reduce the search space. Here, we demonstrate the

coarse-to-fine transformation on two simple MRFs: the Ising model and the stereo

matching task.

152

Ising model

Coarse-to-fine transformations have a long history of applications in physics. When

studying systems which interact across multiple orders of magnitude, such as fluids,

ferromagnets, and metal alloys, it is intractable to work at the most fine-grained

level. Since exact solutions do not exist, physicists developed a method called the

renormalization group [97, 98], which effectively maps the fine-grained representation

of a system onto a coarser but identically parameterized representation with similar

properties.

One of the simplest testbeds for renormalization group methods is the 2-dimensional

Ising model. The state space is an 𝑛× 𝑛 lattice of cells, each of which can take one

of two spin values, 𝜎𝑖 ∈ {−1,+1}. The energy of a particular configuration of spins

𝜎 is given by the Hamiltonian:

ℋ(𝜎) = 𝐽
∑︁
⟨𝑖𝑗⟩

𝜎𝑖𝜎𝑗

where 𝐽 is the interaction constant and ⟨𝑖𝑗⟩ indicates summing over all possible pairs

of neighbors. Note that the number of possible configurations grows exponentially

in 𝑛, rendering an exhaustive search for low-energy states impossible.

The interaction constant can be written 𝐽 = 1/𝑇 where 𝑇 is the temperature of

the system. The configuration distribution takes different forms at different temper-

atures: we will conduct experiments at 𝑇 = 1, a low-temperature condition where

spins prefer to globally align, and 𝑇 = 2.39, the critical temperature, where long-range

correlations dominate. Above the critical temperature (e.g. for 𝑇 > 3), cells become

uncoupled and the energy distribution over configurations converges to uniform, so

we focus on lower temperatures.

153

We implemented the Ising energy-minimization problem as a simple probabilistic

program, which first samples a set of spins and then factors based on the energy

of that configuration. To apply our coarse-to-fine transformation, we used the spin-

block majority-rule for our coarsenValue and refineValue functions. To coarsen,

this rule replaced each 3 × 3 sub-lattice with its modal value (see Figure 7-5). To

refine a single cell in the coarse matrix, we considered the space of all 256 possible

3× 3 matrices that could coarsen to that value. Note that this sequential refinement

– making many small choices instead of one big one – differs in interesting ways from

the typical renormalization group approach, which simultaneously replaces all sub-

lattices and reweights the interaction constant 𝐽 accordingly. To facilitate sequential

refinement, we implemented a polymorphic energy function, which can directly eval-

uate partially coarsened matrices without needing to refine all the way down to the

base.

We ran two experiments on 27 × 27 lattices to demonstrate the performance of

our coarsened program at different levels of coarsening. In our first experiment,

we set the temperature to 𝑇 = 1 and averaged 10 runs for both flat filtering and

coarse-to-fine filtering (with 30 and 90 levels). The 90 level coarsening condition

fully reduces the 27 × 27 lattice to a 3 × 3 lattice, and the 30 level condition yields

a partially coarsened matrix. In our second experiment, we set the temperature to

𝑇 = 2.39 and run the same set of conditions. Figures 7-4a and 7-4b show the average

importance weight for different levels of coarsening. We see that even intermediate

levels of coarsening perform better than flat filtering, and that a full coarsening

performs dramatically better than the other conditions . The best solution from the

second experiment is shown in the right-most panel of Figure 7-5, along with the

two coarser configurations from which it was refined. This displays the characteristic

local-neighborhood structure of the Ising model at critical temperatures.

154

Stereo matching

Another common application of MRFs is the stereo matching task [8, 73]. The goal

is to estimate the disparity between two images, ℐ and ℐ ′, captured from slightly

shifted viewpoints. This disparity map can be used to recover a rough measure of

depth. As in the Ising case, we implement this task in a probabilistic programming

language by sampling a lattice of disparity values, and factoring on its energy.

The energy function for a particular set of disparity values has two parts: (1)

a smoothing term penalizing distance between the values of neighbors and (2) a

data cost term penalizing each particular disparity value for discrepancies with the

true data (as measured by comparing the difference in pixel intensities at the given

discrepancy):

ℋ(𝑑) =
∑︁

{𝑝,𝑞}∈𝒩

𝑉𝑝,𝑞(𝑑𝑝, 𝑑𝑞) +
∑︁
𝑝

𝐶(𝑝, 𝑑𝑝)

We denote the intensity of pixel 𝑝 in image ℐ by ℐ𝑝. Since corresponding pixels

should have similar intensities, we set our data cost term 𝐶(𝑝, 𝑑𝑝) as suggested by

[8], taking the absolute difference between ℐ𝑝 and ℐ ′𝑝+𝑑𝑝
. To reduce sensitivity to

variability in image sampling, we interpolate between neighboring intensities in the

neighborhood 𝑥 ∈ (𝑑 − 0.5, 𝑑 + 0.5) and take the minimum. For our smoothing

function, we use the truncated squared error:

𝑉𝑝,𝑞(𝑑𝑝, 𝑑𝑞) = min((𝑑𝑝 − 𝑑𝑞)2, 𝑉max)

with 𝑉max = 5.

We implemented energy minimization for the stereo matching model analogous

to the Ising model. Figure 7-4c shows that in a comparison between coarse-to-fine

155

0 50 100 150 200

−
35

0
−

30
0

−
25

0
−

20
0

Seconds

E
st

im
at

ed
 lo

g
Z

No coarsening
6 levels
8 levels

(a) SMC using a coarse-to-fine model
finds more probable samples earlier on
than SMC without coarsening.

−
30

0
−

20
0

−
10

0
0

Number of HMM states

E
st

im
at

ed
 lo

g
Z

503 1003 1503 2003 2503

Coarse−to−fine SMC
Plain SMC

(b) For small numbers of states, coarse-
to-fine is indistinguishable from plain
particle filtering. As the number of states
grows, coarse-to-fine is able to provide
better solutions in the same amount of
time.

Figure 7-6: Inference results for a factorial HMM

SMC and importance sampling, SMC finds lower-energy states more efficiently for a

10x40 cropped pair of images from the Middlebury dataset [73], although the absolute

quality of the states found is difficult to evaluate from these numbers.

7.4.2 Factorial HMM

In our second example, we test the hypothesis that abstractions are useful as a means

to avoid particle collapse in large state spaces. For this reason, we chose the factorial

HMM, a model with a large effective state size even within a single particle filter step.

The Factorial HMM is a HMM where the state factors into multiple variables [20].

If there are 𝑀 possible values for each latent state, and 𝑘 state variables per time

156

step, then the effective state size is 𝑀𝑘. If only few of these have high probability,

then even for moderate 𝑀 and 𝑘 it is possible that there are not sufficiently many

fine-grained particles to cover all regions of high posterior probability.

In our first experiment, we use a factorial HMM with 3 variables per step, 256

possible state values per variable, and 6 observed time steps. We run both coarse-

to-fine filtering (with 6 and 8 abstraction levels) and flat filtering, and average 10

runs.

We coarsen the factorial HMM by merging some state and observation symbols.

To test the hypothesis that coarse-to-fine inference will work best when abstractions

match the dynamics of the model, we generate transition and observation matrices

with approximately hierarchical structure as follows. Enumerate state 1 to 𝑁 . For

states 𝑖 and 𝑗, we let the transition probability be approximately proportional to

2−|𝑖−𝑗|. Similarly, for state 𝑖, the probability of generating observation 𝑘 is propor-

tional to 2−|𝑖−𝑘|.

Figure 7-6a shows the average importance weight, which is an estimate for the

normalization constant. Since such estimates are essentially lower bounds [31], we

can conclude that plain particle filtering consistently underestimates the true nor-

malization constant.

In our second experiment (Figure 7-6b), we compare the behavior of flat and

coarse-to-fine filtering as the number of HMM states increases from 23 to 2563. As

before, we keep the runtime constant. For small numbers of states, plain and coarse-

to-fine SMC give very similar estimates. As the number of states grows, the difference

between coarse-to-fine and plain filtering grows as well, indicating that coarse-to-fine

is most useful in large state spaces.

157

(a) Ground truth (b) Inferred layout

Figure 7-7: Visual scene understanding results

7.4.3 Visual scene understanding

Vision is a prime candidate for coarse-to-fine approaches: data is high-dimensional,

fast recognition performance is frequently desired, and the hierarchical organization

of our visual cortex—starting with low-level concepts such as edges, progressing

towards areas that process objects and motions—suggests that the human brain

may itself employ a similar approach.

In this final qualitative experiment, we test the coarse-to-fine approach on the

problem of recovering the objects underlying a scene given a pixel-based image.

Specifically, we look at the kinds of entities one might see in satellite photography:

houses, lawns, and swimming pools, seen from above. Given a generative model that

selects such objects and their types, coordinates and angles, and renders an image,

the task is to invert this model and determine the objects and their properties given

an image.

Figure 7-7 shows an example. The first panel shows the true image, the second

shows the result of recovering object data by applying particle filtering to a three-

level coarse-to-fine model, and re-rendering the object properties onto an image.

158

7.5 Discussion

When does coarse-to-fine inference help? It is generally difficult to compute or esti-

mate the posterior probability of a set of (program) states. However, precisely this

is required for coarse-to-fine inference to work: when we evaluate a program on a

coarse level, we need to estimate for each coarse value how likely its refinements are

under the posterior. This suggests that settings where coarse-to-fine inference works

have special characteristics that make such estimation feasible. We now name a few.

First, the given program may satisfy independence assumptions that make es-

timating posterior probabilities feasible. For example, for the program shown in

Figures 7-1 and 7-2a, the score function only depends on one of 𝑥 and 𝑦 at a time;

hence, we can independently compute the estimated score for the refinements of 𝑥

and 𝑦, and use this information in computing the estimated scores for abstract values

of both. Second, we may be in a setting where the type of a coarse value matches

the type of its refinements. In that situation, “polymorphic” score- and primitive

functions may be a cheap way to estimate the posterior probability of a coarse state.

For the Ising model, the energy function satisfies this criterion up to parameter-

ization. Third, coarse-to-fine may be particularly useful in the amortized setting

[85]. Learning the conditional distributions associated with lifted primitive functions

is one instantiation of “learning to do inference”. This is particularly feasible for

smooth state spaces, where one can effectively estimate entire distributions from a

few samples.

Another answer to the question of when coarse-to-fine helps is to point out that

this depends on what inference algorithm is used. For inference by enumeration, exact

coarsening (i.e., coarsening within values that have the same posterior probability)

is useful for increasing computational efficiency. By contrast, for sequential Monte

159

Carlo methods, it is frequently more desirable to coarsen together states with different

posterior probability, as it smoothes the state space and thus increases statistical

efficiency.

The work in this chapter is related to and inspired by a broad background of work

on coarse-to-fine and lifted inference, including (but not limited to) work by Charniak

et al. [10] on coarse-to-fine inference in PCFGs, work on coarse-to-fine inference

for first-order probabilistic models by Kiddon and Domingos [42], and attempts to

“fatten” particles for filtering with broader coverage [48, 80]. Outside of machine

learning, we take inspiration from Approximate Bayesian Computation (conditioning

on summary statistics) and renormalization group approaches to inference in Ising

models [52].

This approach opens up many exciting research directions, including: under-

standing the relation to abstract interpretation, and Galois Connections specifically

[e.g., 12, 57]; automatically deriving coarsenings for hierarchical Bayesian models;

learning good coarsenings, and efficient learning of approximations for coarsened

primitive and score functions; and coarsening (merging) multiple variables across

program blocks, potentially via flow analysis.

We expect that the most interesting applications of coarse-to-fine approaches to

efficient inference are yet to come.

160

Chapter 8

The Road Ahead

This thesis set out to show that probabilistic programs are a productive metaphor

for understanding how the mind works. What have we learned, and what is there

yet to be learned?

After a brief introduction of probabilistic programs in Chapter 2, Chapters 3 and

4 illustrated the representational power of probabilistic programs. I proposed gen-

erative probabilistic programs as a representation language for concepts, and prob-

abilistic inference as a mechanism for learning and reasoning with such concepts. I

provided examples of richly structured concepts, defined in terms of systems of rela-

tions, subparts, and recursive embeddings, that are naturally expressed as programs.

I gathered initial experimental evidence that human generalization patterns for obser-

vations generated by such concepts can be explained using probabilistic programs,

but are not naturally accounted for using previous methods. I then proceeded to

models of reasoning about reasoning, a domain where the expressive power of prob-

abilistic programs was necessary to formalize our intuitive domain understanding.

This is due to the fact that, unlike previous formalisms, probabilistic programs allow

161

conditioning to be represented in a model, not just applied to a model. I illustrated

this insight using programs that concisely express reasoning about agents in game

theory, artificial intelligence, and linguistics.

In Chapters 5-7, we looked at three inference algorithms with the dual intent

of showing how to efficiently compute the marginal distributions defined by proba-

bilistic programs and providing building blocks for eventual process-level accounts

of human cognition. I developed a Dynamic Programming technique that can help

make inference tractable in models where computation is reused; as a particularly

important case, this includes the models of reasoning about reasoning that we saw

in Chapter 4. I then started to address the puzzle of how humans can be so quick in

recognizing words, objects, and scenes, while coherent probabilistic inference tends to

be slow, frequently taking many thousands of sequential operations. I introduced the

setting of amortized inference and showed that learning “recognition models” from

past inference results can speed up future inferences. Finally, I described a generic

approach to coarse-to-fine inference in probabilistic programs and showed evidence

that it can speed up inference in models with large hierarchical state spaces.

Over the course of this thesis, we have gathered a few pieces of the puzzle of

cognition, and in outline we can see how they might form part of a coherent solu-

tion. This coherence is by construction—the pieces are expressed within the common

framework of probabilistic programs, after all. Finding the connections that make

these pieces snap together is one of the major next challenges for understanding

cognition in this framework. In the next few paragraphs, I will point out some of

the connections we can already foresee, starting with the domain of concept learning

and branching out to other topics covered in this thesis. In connecting the pieces, we

have to be prepared that the number of required additional pieces may outnumber

what we have so far, maybe vastly. Indeed, we do not know the size of the emerging

162

picture; there may be entire regions that we have never even considered, because

we have not yet built up the conceptual vocabulary required to think about them.

While it is naturally difficult to know where such blind spots are, I will highlight

some parts that currently look blurred under the lens of probabilistic programming;

some parts that the streetlamp we are searching under may only partially illuminate.

But first, let us think about phenomena that are well within the explanatory reach

of this framework.

The model of concept learning presented in Chapter 3 is a caricature. I have

argued that it is a good caricature, one that captures key parts of human concept

acquisition, but it is a caricature nonetheless, and for several reasons. First, much

of human learning is social: children learn from interactions with their parents, and

students learn from interactions with their teachers. We are not passive recipients of

randomly sampled data; instead, we are active participants in the learning process,

choosing how to interact with our teachers and the world. Second, we learn from

language. For example, Lupyan et al. [51] show that verbal labels help human sub-

jects learn to classify objects into categories, even when the labels are redundant.

Cabrera and Billman [9] investigated how “nonsense” sentences such as “the mug-

glet troces the diggy” and “the mugglet and the diggy troce” affect the learning of

event categories. Third, Schulz [75] argues that, in contrast to current approaches

to inference in probabilistic programs that are commonly based on random walks

and other “uninformed” sampling techniques, children’s learning seems to be more

constructive and directed. Fourth, as useful as the separation between representa-

tion and inference is for clarifying our understanding of human concept learning, it is

almost certain that conceptual change and learning to reason with new concepts go

hand in hand, and that more comprehensive accounts of concept learning will have

something to say about this interaction.

163

Fortunately, we can already foresee how we might extend the program induction

model in Chapter 3 to account for some of these phenomena. Models of reasoning

about reasoning as described in Chapter 4 are a natural component for future models

of concept learning, including models of learning in pedagogical situations [77] and

models that combine language and concept learning [e.g., 17]. Indeed, recent work by

Hawkins et al. [34] has developed probabilistic programs that combine active learning

and natural pedagogy in a model of question-answering; a very similar model could

be used to study concept learning.

For inference in such models, similarly straightforward extensions are possible.

When we acquire a new concept, one of the challenges we face is in learning how

to reason using this concept. We have proposed the setting of amortized inference,

and specifically the learning of inverse recognition models, as a candidate for what

“learning to reason” could mean. The integration of concept learning and “inverse

learning”—maybe in a wake-sleep style algorithm [36]—is an exciting direction for

future work. Similarly, coarse-to-fine approaches seem to be useful not only for

inference given a model, but also for learning a model in the first place. That is, it is

plausible that children first learn a coarse model of the world before they fill in the

details. Understanding how this kind of learning works, and how it interacts with

coarse-to-fine inference, is a natural direction, as is the follow-up idea of learning

inverses for coarse-to-fine models.

There are plenty of other future directions for work on inference, including:

(1) Can we use counterfactuals and responsibility attribution mechanisms to deter-

mine which parts of a model are to blame if a model fails to explain the data well?

(2) How can we implement probabilistic programs using distributed computation?

As a particularly interesting instance, can we compile probabilistic programs so that

they run on a substrate provided by a (artificial) neural net? Does this constrain

164

the kinds of probabilistic programs we can write? (3) Can we find classes of pro-

grams where inference is always easy, or likely to be easy? Can we define priors

that systematically favor such classes? (4) What is a systematic general approach

to caching computation in probabilistic programs? In Chapters 5 and 6, I describe

two approaches. Can we unify them under a single mechanism that makes principled

decisions about what computations to reuse? None of these questions are trivial,

some could almost certainly be a thesis in their own right, but most importantly, all

seem productively approachable at this point.

Are there any phenomena that are not a good fit for probabilistic programming?

The answer is almost certainly yes, but the generality of the framework makes it

difficult to be more specific. For any phenomenon, it is likely that we can come

up with a computational treatment, and if one does not readily come to mind, we

cannot easily distinguish inadequacy of the framework from failures of imagination.

An answer to this question will probably only emerge as a hard-won empirical insight

that some classes of phenomena resist formalization in this framework more than

others. That said, it is still worthwhile to ask: In what ways are human concepts

unlike programs? In what ways is thinking unlike Bayesian inference? I do not

have good answers to these questions, but one of the topics I would investigate

as a candidate for an idea that might be challenging to tackle using probabilistic

programs is the notion of logical uncertainty [e.g., 33]; that is, uncertainty that can

be resolved by more reasoning, without additional observations. On the side of

cognitive science, this comes up when we ask how our framework can accommodate

the kind of thinking that mathematicians regularly do. In computer science, this

comes up when we think about meta-inference—that is, the idea of treating inference

mechanisms as the objects to be reasoned about. A good mechanism for choosing

how to do inference in any given model may itself employ inference. What would

165

such meta-level probabilistic programs look like?

Other questions that could test the explanatory power of our framework include:

(1) How do the relatively abstract representations discussed here relate to the more

primitive building blocks of the human mind (such as emotions and reinforcement

learning), which may in part be shared with our animal ancestors? (2) We have

discussed how to model the acquisition of beliefs and concepts. Can we similarly

model the acquisition of values? How does joint learning of values and concepts

play out when values themselves are expressed in terms of concepts that are in flux?

(3) Humans may have different overlapping systems of concepts for understanding a

single domain, and the conclusions drawn from one such system may only partially

propagate to the others. How can we model this multiplicity of views? By focussing

on questions like these, which are arguably close to the boundary of our framework,

we may be able to better understand where exactly this boundary lies.

For now, it is difficult to predict how far the framework of probabilistic programs

will carry us. Over the last decades, computation and probability have turned out

to be solid building blocks for the study of cognition. It is unlikely that either will

be displaced soon, and their combination in probabilistic programs is both natural

and productive, as I hope this thesis has demonstrated. It is not outlandish to think

that, while the road ahead is long, this framework will carry us all the way, without

fundamental revision. Or maybe there will come a point when most of what there

is to learn within this framework has been learned; when both its potential and its

limitations are well-understood, and a pattern in its limitations emerges that points

towards a fundamentally new way of studying cognition. This, too, is not outlandish

to think. The truth is likely in between, and it will be exhilarating to see both the

ways in which probabilistic programming will form a lasting building block for the

science of cognition, and the ways in which new concepts will be required.

166

Bibliography

[1] Harold Abelson, Gerald J Sussman, and Julie Sussman. Structure and in-
terpretation of computer programs, (second edition), volume 33. MIT Press,
Cambridge, MA, USA, 2nd edition, 1997. ISBN 0-262-01153-0.

[2] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. Compilers:
principles, techniques, and tools, volume 1009. Addison Wesley, 2007.

[3] John R. Anderson. The adaptive character of thought. Hillsdale NJ Earlbaum,
104:276, January 1990. ISSN 0002-9556.

[4] Chris Baker, Rebecca Saxe, and Joshua B. Tenenbaum. Bayesian models of
human action understanding. Advances in Neural Information Processing Sys-
tems, 18:99–106, 2005.

[5] Chris L Baker, Rebecca R Saxe, and Joshua B Tenenbaum. Bayesian Theory
of Mind. Proceedings of the Thirty-Second Annual Conference of the Cognitive
Science Society, 1:1–10, 2011.

[6] Paul Bello. Cognitive Foundations for a Computational Theory of Mindreading.
Advances in Cognitive Systems, 2012.

[7] Paul Bello and Nick Cassimatis. Developmental accounts of theory-of-mind ac-
quisition: Achieving clarity via computational cognitive modeling. 28th Annual
Conference of the Cognitive Science Society, Vancouver, Canada, 2006.

[8] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy min-
imization via graph cuts. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 23(11):1222–1239, 2001.

[9] Ángel Cabrera and Dorit Billman. Language-driven concept learning: Deci-
phering Jabberwocky. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 22(2):539, 1996.

167

[10] Eugene Charniak, Mark Johnson, Micha Elsner, Joseph Austerweil, David El-
lis, Isaac Haxton, Catherine Hill, R. Shrivaths, Jeremy Moore, Michael Pozar,
and Theresa Vu. Multilevel Coarse-to-fine PCFG Parsing. Proceedings of the
Human Language Technology Conference of the NAACL, Main Conference,
pages 168–175, 2006.

[11] Jian Cheng and Marek J. Druzdzel. AIS-BN: An Adaptive Importance Sam-
pling Algorithm for Evidential Reasoning in Large Bayesian Networks. Journal
of Artificial Intelligence Research, 13:155–188, 2000. ISSN 10769757.

[12] Patrick Cousot and Michael Monerau. Probabilistic abstract interpretation. In
Programming Languages and Systems, volume 7211 of Lecture Notes in Com-
puter Science, pages 169–193. Springer, 2012.

[13] Jason Eisner, Eric Goldlust, and Noah A Smith. Compiling Comp Ling: Prac-
tical Weighted Dynamic Programming and the Dyna Language. In Proceedings
of Human Language Technologies and the Conference on Empirical Methods in
Natural Language Processing, 2005.

[14] Jacob Feldman. The Structure of Perceptual Categories. Journal of mathe-
matical psychology, 41:145–70, January 1997. ISSN 0022-2496.

[15] Jerry Alan Fodor. The Language of Thought, volume 5. Harvard University
Press, 1975. ISBN 9780674510302.

[16] Michael C. Frank and Noah D. Goodman. Predicting Pragmatic Reasoning in
Language Games. Science, 336(6084):998–998, May 2012. ISSN 0036-8075.

[17] Michael C. Frank, Noah D. Goodman, and Joshua B. Tenenbaum. Using speak-
ers’ referential intentions to model early cross-situational word learning: Re-
search article. Psychological Science, 20(5):578–585, 2009. ISSN 09567976.

[18] Cameron E Freer, Vikash K Mansinghka, and Daniel M Roy. When are prob-
abilistic programs probably computationally tractable? NIPS 2010 Workshop
on Monte Carlo Methods in Modern Applications, 2010.

[19] George Gamow and Marvin Stern. Puzzle-math, 1958.

[20] Zoubin Ghahramani and Michael I Jordan. Factorial Hidden Markov Models.
Machine Learning, 29(2-3):245–273, November 1997.

168

[21] Valerie Goffaux, Judith Peters, Julie Haubrechts, Christine Schiltz, Bernadette
Jansma, and Rainer Goebel. From coarse to fine? Spatial and temporal dy-
namics of cortical face processing. Cerebral Cortex, page bhq112, 2010.

[22] Joshua Goodman. Semiring Parsing. Computational Linguistics, 25(4), 1999.

[23] Noah D Goodman and Andreas Stuhlmüller. Knowledge and implicature: Mod-
eling language understanding as social cognition. Topics in Cognitive Science,
2013.

[24] Noah D Goodman and Andreas Stuhlmüller. The Design and Implementation
of Probabilistic Programming Languages. http://dippl.org, 2014.

[25] Noah D Goodman, Chris L Baker, Elizabeth Baraff Bonawitz, Vikash K Mans-
inghka, Alison Gopnik, Henry Wellman, Laura Schulz, and Joshua B Tenen-
baum. Intuitive Theories of Mind : A Rational Approach to False Belief.
Cognitive Science Conference Proceedings, pages 1382–1387, 2006.

[26] Noah D Goodman, Vikash Mansinghka, Daniel M Roy, K A Bonawitz, and
Joshua B Tenenbaum. Church: a language for generative models. Proceedings
of the 24th Conference in Uncertainty in Artificial Intelligence, pages 220–229,
2008.

[27] Noah D Goodman, Joshua B Tenenbaum, Jacob Feldman, and Thomas L
Griffiths. A rational analysis of rule-based concept learning. Cognitive Science,
32(1):108–154, 2008.

[28] Noah D Goodman, Joshua B Tenenbaum, Timothy J O’Donnell, and the
Church Working Group. Probabilistic Models of Cognition, 2011.

[29] Alison Gopnik and Andrew N Meltzoff. Words, thoughts, and theories. MIT
Press, 1998.

[30] Thomas L. Griffiths, Kevin R. Canini, Adam N. Sanborn, and Daniel J.
Navarro. Unifying rational models of categorization via the hierarchical Dirich-
let process. Proceedings of the 29th Annual Conference of the Cognitive Science
Society, January 2009.

[31] Roger Grosse. Unbiased estimators of partition functions are basically lower
bounds. http://hips.seas.harvard.edu/, January 2013.

169

http://dippl.org
http://hips.seas.harvard.edu/

[32] Heikki Haario, Marko Laine, Antonietta Mira, and Eero Saksman. DRAM:
Efficient adaptive MCMC. Statistics and Computing, 16(4):339–354, 2006.
ISSN 09603174.

[33] Joseph Y Halpern. Reasoning about Uncertainty, volume 21. MIT Press Cam-
bridge, 2003.

[34] Robert X.D. Hawkins, Andreas Stuhlmüller, Judith Degen, and Noah D. Good-
man. Why do you ask? Good questions provoke informative answers. In prep.

[35] Luis D Hernandez, Serafin Moral, and Antonio Salmeron. A Monte Carlo al-
gorithm for probabilistic propagation in belief networks based on importance
sampling and stratified simulation techniques. International Journal of Ap-
proximate Reasoning, 18(1):53–91, 1998.

[36] Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The
"wake-sleep" algorithm for unsupervised neural networks. Science, 268(5214):
1158–1161, 1995. ISSN 0036-8075.

[37] Berthold K P Horn. Understanding image intensities. Artificial intelligence, 8
(2):201–231, 1977.

[38] Laurence R Horn. Implicature. In The Handbook of Pragmatics. Blackwell
Publishing Ltd, Oxford, UK, January 2006.

[39] Irvin Hwang, Andreas Stuhlmüller, and Noah D Goodman. Inducing Proba-
bilistic Programs by Bayesian Program Merging. 2011.

[40] Edwin T. Jaynes. Probability theory: the logic of science, volume 27. Cambridge
university press, 2005. ISBN 0521592712.

[41] Charles Kemp, Aaron Bernstein, and Joshua B. Tenenbaum. A generative
theory of similarity. Proceedings of the 27th Annual Conference of the Cognitive
Science Society, pages 1132–1137, January 2005.

[42] Chloé Kiddon and Pedro Domingos. Coarse-to-Fine Inference and Learning
for First-Order Probabilistic Models. In Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence, pages 1049–1056, August 2011.

[43] Dan Klein and Christopher D Manning. An O(𝑛3) Agenda-Based Chart Parser
for Arbitrary Probabilistic Context-Free Grammars. Technical report, Stanford
University, 1998.

170

[44] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In
Machine Learning: ECML 2006, pages 282–293. Springer, 2006.

[45] Daphne Koller and Brian Milch. Multi-agent influence diagrams for represent-
ing and solving games. IJCAI International Joint Conference on Artificial
Intelligence, 45(1):1027–1034, 2001. ISSN 10450823.

[46] Daphne Koller, David McAllester, and Avi Pfeffer. Effective Bayesian Infer-
ence for Stochastic Programs. In Proceedings of the National Conference on
Artificial Intelligence, pages 740–747, 1997.

[47] David M Kreps. A Course in Microeconomic Theory. A Course in Microeco-
nomic Theory, pages xviii + 850, October 1990. ISSN 1935-990X.

[48] Tejas D Kulkarni, Ardavan Saeedi, and Samuel Gershman. Variational Particle
Approximations. arXiv preprint arXiv:1402.5715, pages 1–11, 2014.

[49] Ugo Dal Lago and Margherita Zorzi. Probabilistic Operational Semantics for
the Lambda Calculus. RAIRO - Theoretical Informatics and Applications,
cs.LO(46):35, April 2011. ISSN 0988-3754.

[50] Hector J. Levesque. Thinking as Computation: A first course, 2012. ISBN
9780262016995.

[51] Gary Lupyan, David H Rakison, and James L McClelland. Language is not
Just for Talking: Redundant Labels Facilitate Learning of Novel Categories.
Psychological Science, 18(12):1077–1083, 2007.

[52] Edward Lyman and Daniel M. Zuckerman. Resolution exchange simulation
with incremental coarsening. Journal of Chemical Theory and Computation,
2:656–666, 2006. ISSN 15499618.

[53] Arthur B Markman. Knowledge representation. Psychology Press, January
1999.

[54] David Marr. Vision: A computational investigation into the human represen-
tation and processing of visual information. Henry Holt and Co., Inc. New
York, NY, USA, January 1982.

[55] Robert Mateescu, Kalev Kask, Vibhav Gogate, and Rina Dechter. Join-graph
propagation algorithms. Journal of Artificial Intelligence Research, 37(1):279–
328, 2010.

171

[56] Michael D Menz and Ralph D Freeman. Stereoscopic depth processing in the
visual cortex: a coarse-to-fine mechanism. Nature neuroscience, 6(1):59–65,
2003.

[57] David Monniaux. Abstract interpretation of probabilistic semantics. In Static
Analysis, volume 1824 of Lecture Notes in Computer Science, pages 322–339.
Springer, 2000.

[58] Quaid Morris. Recognition Networks for Approximate Inference in BN20 Net-
works. Morgan Kaufmann Publishers Inc., August 2001. ISBN 1-55860-800-1.

[59] Ian Murray and Zoubin Ghahramani. Bayesian learning in undirected graphical
models: approximate MCMC algorithms. Proceedings of the 20th conference
on Uncertainty in artificial intelligence, pages 392–399, 2004.

[60] Ian Murray, Zoubin Ghahramani, and David MacKay. MCMC for doubly-
intractable distributions. Proceedings of the 22nd Annual Conference on Un-
certainty in Artificial Intelligence (UAI), pages 359–366, 2006.

[61] Shaun Nichols and Stephen P Stich. Mindreading: An Integrated Account of
Pretence, Self-Awareness, and Understanding Other Minds. Oxford University
Press, USA, October 2003.

[62] Robert M Nosofsky. Attention, similarity, and the identification-categorization
relationship. Journal of Experimental Psychology: General, 115(1):39–57, 1986.

[63] Luis E Ortiz and Leslie Pack Kaelbling. Adaptive Importance Sampling for
Estimation in Structured Domains. In Proc. of the 16th Ann. Conf. on Uncer-
tainty in A.I. (UAI-00), pages 446–454. Morgan Kaufmann Publishers, 2000.

[64] Slav Petrov, Aria Haghighi, and Dan Klein. Coarse-to-fine syntactic machine
translation using language projections. Empirical Methods in Natural Lan-
guage, pages 108–116, 2008.

[65] Avi Pfeffer. IBAL: A Probabilistic rational programming language. In Proceed-
ings of the International Joint Conferences on Artificial Intelligence, 2001.

[66] Martyn Plummer and Others. JAGS: A program for analysis of Bayesian
graphical models using Gibbs sampling. Proceedings of the 3rd international
workshop on distributed statistical computing, 2003.

172

[67] Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep ar-
chitecture. Proceedings of the IEEE International Conference on Computer
Vision, pages 689–690, 2011.

[68] Bob Rehder and ShinWoo Kim. How causal knowledge affects classification:
A generative theory of categorization. Journal of experimental psychology.
Learning, memory, and cognition, 32:659–683, January 2006. ISSN 0278-7393.

[69] Gareth O. Roberts and Jeffrey S. Rosenthal. Examples of adaptive MCMC.
Journal of Computational and Graphical Statistics, 18(2):349–367, 2009. ISSN
1061-8600.

[70] Antonio Salmeron, Andrés Cano, and Serafin Moral. Importance sampling in
Bayesian networks using probability trees. Computational Statistics and Data
Analysis, 34(4):387–413, October 2000.

[71] Adam N Sanborn, Vikash K Mansinghka, and Thomas L Griffiths. Reconciling
intuitive physics and Newtonian mechanics for colliding objects. Psychological
Review, 120(2):411, April 2013.

[72] Taisuke Sato. Generative Modeling by PRISM. In Patricia Hill and David
Warren, editors, Logic Programming, volume 5649 of Lecture Notes in Com-
puter Science, chapter 4, pages 24–35. Springer, Berlin, Heidelberg, 2009. ISBN
978-3-642-02845-8.

[73] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. International journal of computer
vision, 47(1-3):7–42, 2002.

[74] Thomas C Schelling. The Strategy of Conflict. Harvard University Press, 1960.

[75] Laura Schulz. Finding New Facts; Thinking New Thoughts. Advances in Child
Development and Behavior, 43:269–294, 2012.

[76] Ross D Shachter and Mark A Peot. Simulation Approaches to General Proba-
bilistic Inference on Belief Networks. In Proc. of the 5th Ann. Conf. on Uncer-
tainty in A.I. (UAI-89), pages 311–318, New York, NY, 1989. Elsevier Science.

[77] Patrick Shafto, Noah D. Goodman, and Thomas L. Griffiths. A rational ac-
count of pedagogical reasoning: Teaching by, and learning from, examples.
Cognitive Psychology, 71:55–89, 2014. ISSN 00100285.

173

[78] Lei Shi, Naomi H Feldman, and Thomas L Griffiths. Performing Bayesian
inference with exemplar models. Proceedings of the 30th Annual Conference of
the Cognitive Science Society, pages 745–750, 2008.

[79] Stuart M Shieber, Yves Schabes, and Fernando C N Pereira. Principles and
implementation of deductive parsing. The Journal of Logic Programming, 24
(1-2):3–36, 1995.

[80] Jacob Steinhardt and Percy Liang. Filtering with Abstract Particles. In Pro-
ceedings of The Thirty-First International Conference on Machine Learning,
pages 727–735, June 2014.

[81] Andreas Stolcke and Stephen Omohundro. Inducing probabilistic grammars
by bayesian model merging. In Grammatical inference and applications, pages
106–118. Springer, 1994.

[82] Andreas Stuhlmüller and Noah D Goodman. A Dynamic Programming Al-
gorithm for Inference in Recursive Probabilistic Programs. Second Statistical
Relational AI workshop at UAI 2012 (StaRAI-12), 2012.

[83] Andreas Stuhlmüller and Noah D Goodman. Reasoning about Reasoning by
Nested Conditioning: Modeling Theory of Mind with Probabilistic Programs.
Cognitive Systems Research, 2013. ISSN 1389-0417.

[84] Andreas Stuhlmüller, Joshua B Tenenbaum, and Noah D Goodman. Learning
Structured Generative Concepts. In Proceedings of the Thirty-Second Annual
Conference of the Cognitive Science Society, 2010.

[85] Andreas Stuhlmüller, Jessica Taylor, and Noah D Goodman. Learning Stochas-
tic Inverses. Advances in Neural Information Processing Systems (NIPS) 27,
2013.

[86] Andreas Stuhlmüller, Robert X.D. Hawkins, Siddharth N, and Noah D. Good-
man. Coarse-to-Fine Sequential Monte Carlo for Probabilistic Programs. In
prep.

[87] Richard Szeliski, Ramin Zabih, Daniel Scharstein, Olga Veksler, Vladimir Kol-
mogorov, Aseem Agarwala, Marshall Tappen, and Carsten Rother. A com-
parative study of energy minimization methods for markov random fields with
smoothness-based priors. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 30(6):1068–1080, 2008.

174

[88] Yun Tang, Wen-Ju Liu, Hua Zhang, Bo Xu, and Guo-Hong Ding. One-pass
coarse-to-fine segmental speech decoding algorithm. In Acoustics, Speech and
Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International
Conference on, volume 1, pages I–I. IEEE, 2006.

[89] Terence Tao. Poincaré’s Legacies. Pages from Year Two of a Mathematical
Blog. Amer Mathematical Society, 2009.

[90] Terry Tao. The blue-eyed islanders puzzle, 2008.

[91] Robert Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Jour-
nal on Computing, 1(2):146–160, 1972.

[92] Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, and Noah D Good-
man. How to Grow a Mind: Statistics, Structure, and Abstraction. Science,
331(6022):1279–1285, 2011.

[93] Marc T Tomlinson and Bradley C Love. From Pigeons to Humans : Grounding
Relational Learning in Concrete Examples. AAAI, 21(1):199–204, 2006.

[94] Marc Toussaint, Stefan Harmeling, and Amos Storkey. Probabilistic inference
for solving (PO)MDPs. Institute for Adaptive and Neural Computation, 2006.

[95] Katsumi Watanabe and Shinsuke Shimojo. When sound affects vision: effects
of auditory grouping on visual motion perception. Psychological Science, 12
(2):109–116, 2001.

[96] Henry M Wellman. The child’s theory of mind. The MIT Press, October 1992.

[97] Kenneth G Wilson. The renormalization group: Critical phenomena and the
Kondo problem. Reviews of Modern Physics, 47(4):773, 1975.

[98] Kenneth G. Wilson. Problems in Physics with many Scales of Length. Scientific
American, 241:158–179, 1979. ISSN 0036-8733.

[99] David Wingate and Theophane Weber. Automated Variational Inference in
Probabilistic Programming. arXiv preprint arXiv:1301.1299, 2013.

[100] David Wingate, Andreas Stuhlmüller, and Noah D Goodman. Lightweight Im-
plementations of Probabilistic Programming Languages Via Transformational
Compilation. In Proceedings of the 14th international conference on Artificial
Intelligence and Statistics, 2011.

175

[101] David Wingate, Andreas Stuhlmüller, and Noah D Goodman. Lightweight Im-
plementations of Probabilistic Programming Languages Via Transformational
Compilation. In Proceedings of the 14th international conference on Artificial
Intelligence and Statistics, pages 1–9, March 2011.

[102] Haohai Yu and Robert A Van Engelen. Refractor importance sampling. arXiv
preprint arXiv:1206.3295, 2012.

[103] Changhe Yuan and Marek J Druzdzel. Importance sampling in Bayesian net-
works: An influence-based approximation strategy for importance functions.
arXiv preprint arXiv:1207.1422, 2012.

176

	Introduction
	Background: Probabilistic Programming
	I Representations
	Concept Learning as Program Induction
	Introduction
	Formal framework
	Concept representation
	Categorization

	Experiment
	Setup
	Results

	Learning, revisited
	Bayesian model merging
	Bayesian program merging

	Conclusion

	Reasoning about Reasoning as Nested Conditioning
	Introduction
	Modeling theory of mind as nested conditioning
	Schelling coordination games
	Language understanding
	Game playing
	Induction puzzles
	Discussion
	Conclusion

	II Algorithms
	Dynamic Programming for Probabilistic Programs
	Introduction
	Inference as marginalization
	Multiply-intractable distributions
	A Dynamic Programming algorithm
	Approach
	Algorithm
	Technical ingredients

	Empirical evaluation
	Related work
	Conclusion

	Learning Stochastic Inverses
	Introduction
	Inverse factorizations
	Learning stochastic inverses
	Inverse MCMC
	Experiments
	Related work
	Conclusion

	Coarse-to-Fine Sequential Monte Carlo
	Introduction
	Background
	Probabilistic programming in WebPPL
	Sequential Monte Carlo

	Algorithm
	Heuristic factors
	Prerequisites
	Model transform
	Lifting constants
	Lifting random variables
	Lifting factors
	Lifting primitive functions

	Empirical evaluation
	Markov Random Fields
	Factorial HMM
	Visual scene understanding

	Discussion

	The Road Ahead

